寄生虫可通过空气、水源、食物以及直接接触等方式寄生于人的体内或体表,并从宿主体内摄取养分以维持其生存、发育和繁殖所需的营养或庇护。虽然动植物可通过免疫作用、制造毒素等方式抵御寄生虫的侵袭,但寄生虫数量和宿主免疫力之间的平衡一旦被打破则会引发健康问题。寄生虫病种类多、分布广且危害重,特别是贫穷落后、卫生条件差的热带和亚热带地区尤为常见,因此如何防治寄生虫病成为备受关注的公共卫生问题。除了源头上减少接触寄生虫外,针对不同寄生虫种类选择合适的抗寄生虫药物也至关重要。
图1 血吸虫病导致非洲儿童腹部严重积水(图片来源于网络)
寄生虫病种类繁多,其中血吸虫病在全世界流行最广,是严重危害人类健康以及影响社会经济发展的的热带病。根据世界卫生组织的流行病学调查,血吸虫病在热带和亚热带地区流行,尤其是无法获得安全饮用水和适当环卫设施的贫穷社区,据估计至少90%需要进行血吸虫病治疗的患者生活在非洲[1]。目前,化学药物治疗是控制血吸虫病的重要手段,这些药物中吡喹酮凭借疗效高、疗程短和不良反应少的优点,是现阶段治疗血吸虫病的首选药物。吡喹酮在20世纪70年代由拜耳公司研发,该药物不仅对多种类型的血吸虫都有很好的杀灭作用,还可用于高危人群的预防,因此对全球血吸虫病的防治产生深远影响[2]。
图2 吡喹酮的化学结构及球棍模型
虽然吡喹酮用于治疗血吸虫病已有40余年,但时至今日其作用机制仍未被充分阐明,特别是吡喹酮对于不同发育阶段的血吸虫具有不同作用的奇特现象迄今尚未有深入研究[3]。目前科学界针对吡喹酮的作用机制提出了多种假说,较为主流的说法认为吡喹酮可能改变虫体对Ca2+ 的渗透性,促使其内流导致虫体活动兴奋、肌肉挛缩,进而不能很好吸附于血管壁;另一方面它还会影响虫体的吸收、排泄和分泌等功能,虫体皮层的损伤也会使得虫体表面的抗原决定簇暴露,从而被宿主免疫系统识别,最终会吸引免疫细胞聚集在虫体周围对其进行攻击[4]。因此,吡喹酮的杀虫机制可概括为药物对虫体的直接作用以及宿主的免疫效应两部分。
图3 吡喹酮对于不同发育阶段血吸虫的不同作用(图片来源于文献3)
不难发现,吡喹酮分子具有一个手性中心,理论上应当存在两种手性异构体,但幸运的是吡喹酮的外消旋体并不会对人体产生危害,虽然左旋异构体的疗效更佳,但目前临床上仍使用外消旋体药物。目前,国内外从不同原料出发已经报道多条吡喹酮的合成路线,此处仅介绍最初拜耳公司从异喹啉出发的路线。首先,异喹啉1和苯甲酰氯以及氰化钾发生Reissert反应生成二氢异喹啉衍生物2,催化加氢还原分子中的不饱和基团生成新的酰胺衍生物3。随后,通过酰基化和分子内SN2反应可以顺利制备化合物5,磷酸加热条件下水解脱去苯甲酰基,最后再和环己基苯甲酰氯反应即可制备吡喹酮[5]。该方法工艺成熟、原料易得、成本较低,但是需要使用高压加氢操作和剧毒原料氰化钾,给安全操作和“三废”处理带来一定的影响。
图4 吡喹酮的最初合成路线
吡喹酮的问世开启了血吸虫病化学治疗的新篇章,它不仅对感染人体的多种血吸虫均有效,还具有疗程短、疗效高、不良反应少的优点。尽管如此,吡喹酮的应用还面临新的挑战,除了其确切的杀虫机制需要进一步阐明外,吡喹酮的长期大量反复使用是否会导致虫体具有耐药性也引发广泛关注。鉴于此,对吡喹酮进行结构修饰进而开发出新型吡喹酮类似物尤为重要,目前已有多种吡喹酮衍生物得到报道,为后续药物研发提供了重要参考[6]。
图5 代表性的新型吡喹酮衍生物
低毒高效的吡喹酮开创了寄生虫病,特别是血吸虫病治疗的新局面。然而,针对吡喹酮作用机制以及血吸虫的耐药性研究目前却没有关键性突破。值得关注的是,吡喹酮的杀虫机制可能涉及多个靶点,这些靶点又涉及血吸虫的受体蛋白、酶、离子通道、转运体、核酸和免疫系统等多个方面,这显然也为血吸虫药物的研发提供了重要理论依据。因此,我们可以大胆展望:随着吡喹酮抗虫作用机理的深入研究,开发新型抗血吸虫药物具有广阔前景。
stages of schistosomes. Parasitol. Res. 2011, 109, 1501. doi: 10.1007/s00436-011-2670-3
[4] 肖树华. 吡喹酮抗血吸虫作用的研究进展. 中国寄生虫学与寄生虫病杂志, 2007, 25, 492. [5] P. Tang, B. Nie, J. Huang, et al. Recent Advances of Pharmaceutical Process Chemistry and Its Innovation in China: Part 1. Front. Pharmacol. 2020, 2, e28. doi: 10.1055/s-0040-1701652 [6] 邓凌, 钟玉梅, 郑绿茵, 等. 抗血吸虫药物研究新进展. 赣南师范大学学报, 2021, 3, 53.
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载
抗生素的发现具有划时代意义,彻底扭转了人类在细菌性疾病面前束手无策、坐以待毙的被动局面。第一次世界大战期间,死于伤口感染的士兵数量远远高于战场阵亡的人数,那时人们的生命极其脆弱,破伤风、败血症、链球菌感染,甚至是轻微的皮肤擦伤都可能使人丢掉性命。时隔20年,第二次世界大战期间,抗生素的发现和应用拯救了无数士兵的生命,战争结束后我们也迎来了属于抗生素的黄金时代。然而,所有的一切都源于青霉素这个20世纪最伟大的发现之一,它从意外发现到应用这段波澜壮阔的历史足以惊叹世人。
图1 拯救士兵生命的青霉素(图片来源于网络)
历史总是惊人的相似,青霉素正如许多伟大的发明和发现一样,其实也源于实验室的“意外”。1928年9月,时任英国圣玛丽医学院的细菌学教授弗莱明(Alexander Fleming)度假结束回到实验室,整理培养皿时他观察到某个敞口被真菌污染的培养皿中出现了神奇的现象:大部分细菌都能正常生成,唯独某个真菌部落附近没有细菌生长,似乎真菌分泌了某种物质杀死并抑制了原本的细菌生长。随后,弗莱明将这种真菌进行培养后发现其分泌物确实能够杀死特定的细菌,因此他根据真菌部落的名称“Penicillium”将其命名为青霉素[1]。然而,关于青霉素发现这段历史却有着不同说法,因为即使弗莱明本人也出现前后矛盾的表述,他曾接受采访时明确表示发现青霉素的培养皿是不小心敞口的,但在另一份文献报道中他又说培养皿是故意敞口使其接受污染的[2]。时过境迁,我们已经很难再清楚还原弗莱明发现青霉素的真实过程,但不可否认的是,弗莱明对于青霉素的早期研究为后续相关研究奠定了重要基础。
图2 青霉素的发现者弗莱明(图片来源于网络)
尽管弗莱明发现了青霉菌分泌物具有杀菌作用并为这种活性物质取名青霉素,但青霉素究竟是何物他并不清楚,甚至一度认为这是一种酶。事实上,除了弗莱明欠缺化学知识外,更重要的原因是青霉素的产量太低,他们无法提取高纯度的青霉素进行鉴定;此外,青霉素提纯过程中不稳定易失活的难题他们也始终无法克服。鉴于此,虽然弗莱明团队在1929年发表了青霉素体外抗菌实验数据,但彼时并未引起学术界和工业界的关注,其中很重要的原因也是因为青霉素太难提纯,后续针对青霉素的跟进研究工作难以开展。
终于在1940年事情出现了转机,牛津大学E. Chain、H. Florey和N. Heatley所领导的团队通过改变青霉菌培养条件,同时对青霉素提取工艺进行优化创新解决了其稳定性问题,最终成功获得青霉素纯品。随后,他们还将提纯的青霉素用于动物实验并得到了理想的结果。自1928年弗莱明发现青霉素以来,他的成果一直无人问津,直到牛津大学的科研团队攻克提取难题后,青霉素才得以大放异彩并在第二次世界大战中拯救了无数生命。正因如此,弗莱明和E. Chain以及H. Florey被授予1945年诺贝尔生理学或医学奖。
图3 从左至右:弗莱明、E. Chain和H. Florey(图片来源于网络)
早期青霉素的合成和大规模生产是极其困难的,后来虽然在多个实验室共同研发以及政府和药企的配合努力下实现了其商品化,但生产方法却依赖青霉菌或者改良的青霉菌而非化学合成,这与青霉素的结构不甚明确有很大关系[4]。1942年,英国生物化学家E. Abraham和E. Chain认真分析青霉素降解的片段后大胆提出设想:青霉素分子存在着一个由三个碳原子和一个氮原子组成的四元β-内酰胺结构以及另一个含有硫原子的五元杂环与它稠合[5]。然而,这个结构提出后却出现很大争议,因为人们普遍倾向于这种四元β-内酰胺结构不能稳定存在。那时针对青霉素的结构,英国著名化学家R. Robinson等人则坚持认为分子中存在噁唑酮结构,因此围绕两种结构的争论持续了很长时间。
图4 根据降解产物推测的青霉素结构
直到1945年,英国传奇科学巨匠霍奇金(Dorothy Hodgkin)通过X-射线衍射技术成功解析出了青霉素的化学结构,并证实分子中确实存在四元β-内酰胺结构[6]。随后,美国和英国医学研究委员会联合在《Science》期刊发文,报道了多部门合作下完成的青霉素化学分析,论文表明青霉素存在多种类型,但全部都含有相同的β-内酰胺结构[7]。然而,当时这些青霉素的命名却并不统一,以罗马数字和英文字母命名的方式并存,后来根据E. Chain的建议统一更改为按照支链基团进行命名,例如2-Pentenylpenicillin、Benzylpenicillin和Phenoxymethylpenicillin等。尽管如此,根据英文字母命名的方式目前仍在使用并且一般提到青霉素指的即是Penicillin G和V两种,二者也是临床主要使用的青霉素药物。
图5 常见的青霉素类型
前文已经提到,青霉素在二战期间拯救了无数生命,因此它的需求量激增,尽管通过改变生产工艺药企能够获得相当可观的青霉素产量,但化学合成青霉素一直是横亘在化学家面前的巨大挑战,尽管青霉素的结构早在1945年就通过X-射线晶体衍射得到确证,但其首次不对称全合成直到12年后才由MIT的John C. Sheehan等人实现[8]。Sheehan等人首先针对青霉素V的结构进行逆合成分析,最后将合成任务简化为首先构建含邻苯二甲酰亚胺单元的砌块2和青霉胺盐酸盐3(D-penicillamine hydrochloride)。其中,后者的合成相对繁琐,他们以廉价易得的外消旋体缬氨酸4为原料,首先和氯乙酰氯进行酰基化反应得到中间体5,与乙酸酐共热后该中间体发生一系列反应最终异构化生成噁唑酮中间体6。随后,噁唑酮中间体发生Michael加成并接受甲氧基负离子进攻开环,酸化后即可生成化合物8。酸性条件下可同时水解脱去N-Ac和酯基,然后与丙酮缩合得到噻唑烷化合物9。为了获得光学纯的砌块3,作者随后将化合物9的游离氨基进行甲酰基保护,然后与马钱子碱(brucine)作用,利用产物的结晶性质差异进行拆分,最后可以获得光学纯的青霉胺盐酸盐3。另一方面,砌块2的合成则非常简单,强碱性条件下与甲酸叔丁酯反应即可制备。完成两个关键砌块的构建后,作者便着手将其“拼接”来合成最终的目标产物青霉素V。
图6 青霉素V的全合成路线-1
随后,在NaOAc和EtOH组成的缓冲体系中,中间体3的氨基和巯基均亲电进攻中间体2的醛基生成中间体12。有意思的是,反应过程中羧基所在碳原子的构型得到保持,但分子中还存在另外两个手性碳原子,因此理论上应该得到四种手性异构体,但实际上该反应仅获得了酯基所在手性碳原子处的两种差向异构体,并且两种异构体在与吡啶共热条件下存在动态平衡,冷却后预期的异构体12可以结晶析出从而实现分离[9]。接下来,肼解脱去邻苯二甲酰亚胺基团,酸化后得到化合物13,碱性条件下通过与苯氧基乙酰氯反应顺利将侧链引入氨基得到中间体14,最后将酯基水解后生成羧酸,在缩合剂N,N’-二环己基碳二亚胺(DCC)作用下,化合物15发生分子内脱水环化生成β-内酰胺结构,最终实现了青霉素V钾盐的全合成。
图7 青霉素V的全合成路线-2
青霉素是人类发现的首个真正意义上的抗生素,也是抗生素发展历史上的重要里程碑;它引发了医学界寻找抗生素药物的高潮,也成功开启了抗生素的黄金时代。后来包括链霉素、头孢菌素、四环素等在内的多种抗生素相继被发现,它们在治疗细菌性感染疾病中发挥了重要作用。然而,近年来抗生素的滥用问题却引人担忧:许多广谱抗生素在杀灭病菌的同时也可能将正常菌群杀灭进而引起菌群失调等危害;其次,细菌耐药性和“超级细菌”的出现也是摆在人们面前十分严峻的问题。因此,如何开发新的抗生素药物并且合理选择和使用它们将是未来摆在所有人面前的新挑战。
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!
随着生活水平的提高,人们的饮食结构发生了巨大变化,肉、禽、蛋、奶等动物性食品的消费显著增加,伴随而来的是因脂质摄入过多造成的“高血脂”等健康问题。所谓血脂,即血液中的脂质总称,主要包括胆固醇、胆固醇酯、甘油三酯和磷脂等。虽然胆固醇既参与形成细胞膜,还是合成胆汁酸、维生素D以及甾体激素的原料,但它也是造成高脂血症的重要元凶。尽管可以通过饮食减少胆固醇摄入,但高脂血症患者往往还需要以降脂药物为主进行治疗。数量众多的降脂药物中,他汀类药物通过抑制酶的活性来减少内源胆固醇的合成,具有降脂效果显著和毒副作用小的优点,是目前治疗高脂血症最常见的药物。
图1 胆固醇的化学结构
胆固醇最初从胆结石中发现,后来被证实血液中过高的胆固醇含量和动脉粥样硬化间存在密切联系,因此胆固醇的内源性生物合成机制成为当时热点研究领域之一。20世纪中期,生物体以乙酰辅酶A为原料,经历乙酰辅酶A→甲羟戊酸→鲨烯→胆固醇的合成机制被逐渐揭开,其中羟甲戊二酰辅酶A还原酶(hydroxymethylglutaryl-CoA reductase,简称HMG-CoA还原酶)是胆固醇合成过程中的限速酶,它催化羟甲戊二酰辅酶A还原并转化为甲羟戊酸,这是胆固醇合成的关键步骤,因此抑制HMG-CoA还原酶的活性必将减少内源性胆固醇的合成[1]。
图2 胆固醇的生物合成机制及HMG-CoA还原酶作用示意图
虽然HMG-CoA还原酶为降脂药物研发提供了理论基础,但是他汀药物的发现还离不开日后被称为“他汀药物之父”的日本生物化学家远藤章(Akira Endo)。20世纪60年代,日本学者梅沢浜夫(Hamao Umezawa)从微生物代谢产物中发现了卡那霉素、博莱霉素和小分子酶抑制剂,受此启发远藤章也提出设想:某种菌类可能会产生抑制HMG-CoA还原酶的代谢产物,该物质具有潜在的药用价值。1972年,系统筛选数千种菌类后,远藤章等人发现青霉属真菌桔青霉(Penicillium cirlrinunr Thom)的培养液提取物能够有效抑制胆固醇的合成,随后他们分离出三种活性物质并将活性最强的物质编号为ML-236B,也是后来被广为熟知的首个HMG-CoA抑制剂——美伐他汀(mevastatin)。此外,远藤章发现ML-236B的酸式结构与HMG-CoA有一定的片段相似性,因此推断其作用机制是竞争性抑制[2]。
图3美伐他汀的结构及其发现者远藤章
1978年,ML-236B在用于治疗家族性高胆固醇血症时取得不错的效果,于是日本三共制药公司开始对其进行临床试验,但后来受到实验犬致癌和小鼠实验结果不佳等不利影响,ML-236B的进一步临床试验被迫终止,三共制药公司也与首个现代降脂药物失之交臂[3]。1979年2月,远藤章又从红曲霉菌中发现了三种与ML-236B类似的强效HMG-CoA还原酶抑制剂,并将其中一种化合物命名为monacolin K,这也成为日后首个上市的他汀类药物[4]。
1979年8月,远藤章发表关于monacolin K的论文后不久,默克制药公司的研究人员表示,他们其实也在几乎与远藤章相同的时间从土曲霉培养液中分离到了一种名为mevinolin的HMG-CoA还原酶抑制剂,并随即将其申请了专利保护。巧合的是,monacolin K后来被证实与mevinolin属于相同的物质,即后来熟知的洛伐他汀(lovastatin),但双方却都因独立发现该化合物在专利问题上产生分歧。1980年4月,默克公司开始着手洛伐他汀的临床试验,但彼时恰逢三共制药因ML-236B的安全性问题停止了后续临床试验[4]。受此影响,默克公司也随后宣布终止洛伐他汀的临床试验,毕竟两个候选药物在化学结构上的差异实在太小。直到确认洛伐他汀并无致癌毒性后,默克公司才重启临床试验,最终在1987年通过美国FDA认证被批准成为首个上市的他汀药物。
图4 洛伐他汀的化学结构
1982年,日本学者M. Hirama等人采用汇聚式的合成策略,报道了洛伐他汀的不对称全合成[5]。他们首先选择(4S)-羟甲基丁内酯1为起始原料,通过与卤代烷的亲核取代反应合成中间体2,碱性水解后内酯开环产物硅基化得到中间体3。随后,氢解即可脱去末端烷氧基生成伯醇,Collins试剂再选择性将其氧化得到醛中间体4。为了合成双烯体5,他们利用反式巴豆基苯砜在碱性条件下去质子产生的碳负离子对醛基亲核进攻再消去的方式实现。最后,再借助烷基锂试剂对酯基的亲核取代即可顺利制备合成洛伐他汀的片段6。
另一片段的合成是以ꞵ-羰基酯7为起始原料,首先碱性水解(皂化),然后在面包酵母(baker’s yeast)作用下羰基被对映体专一性还原为醇,再和重氮甲烷作用形成羧酸甲酯8。该中间体随即被转化为四氢吡喃醚,然后经DIBAL-H还原为醛9。大位阻强碱LDA作用下,乙酸乙酯与化合物9发生缩合反应,然后酸性条件脱去四氢吡喃保护基得到中间体10。随后,1,3-二醇结构通过形成缩酮进行保护,避免干扰LiAlH4还原酯基生成伯醇。接下来,他们再次将羟基进行保护得到11,臭氧化反应切断端烯生成醛即获得重要的片段12。
图5 洛伐他汀的合成路线-1
完成两个重要片段的构建后,Hirama等人开始着手将两部分“拼接”得到最终的目标分子。片段6和12首先在NaH作用下,经历“加成-消除”的过程得到双键均为E式的关键中间体13。高沸点溶剂下回流较长时间,该中间体可以发生立体专一性Diels-Alder反应获得反式环化产物14。该中间体形成烯醇硅醚后被氧化为烯酮15,并接受二甲基铜锂试剂的亲核进攻,综合考虑位阻效应和电子效应的影响,反应专一性地发生在ꞵ位获得化合物16,至此就完成了洛伐他汀基本母环结构的构建。接下来,Hirama等人又将母环中的羰基还原后与(2S)-甲基丁酸酐酯化、脱去支链中的缩酮基团和苄氧基、氧化、分子内酯化、脱保护等多个步骤最终实现了洛伐他汀的不对称全合成[6]。
图6 洛伐他汀的合成路线-2
洛伐他汀开辟了HMG-CoA还原酶抑制剂类降脂药新纪元,随即有多个他汀药物相继研制成功。事实上,洛伐他汀在进行临床试验的同时,默克公司就在着手另一个名为MK-733的他汀药物研发,该药物后来更名为辛伐他汀(simvastatin)并被证实其疗效和安全性较洛伐他汀更高。此后,许多他汀药物相继问世,例如普伐他汀(pravastatin)、氟伐他汀(fluvastatin)以及后来居上的阿托伐他汀(atorvastatin)等,这些药物给药企带来巨大利润回报的同时也很大程度减轻了患者痛苦[7]。值得提的是,目前他汀类药物位列世界卫生组织基本药物清单,属于基础医疗体系必备药物之一。
图7 其他类型的他汀药物
他汀药物的成功研发得益于生物化学家对胆固醇及其生物合成机制数年累月的研究,特别是HMG-CoA还原酶的发现成为他汀药物诞生的先决条件。距离远藤章教授发现首个HMG-CoA还原酶抑制剂美伐他汀已经过去近半个世纪,他汀药物早已成为众人熟知的经典畅销药。然而,他汀药物的研发过程离不开科学家之间以及知名药企间的精诚合作,因此从新药研发角度来说,他汀当之无愧是医药行业值得深入研究的经典成功案例。作为普通群众,我们期待能有更多诸如他汀类的新药诞生,为我们的健康保驾护航。
doi: 10.1038/nm1008-1050
[4] A. Endo, The origin of the statins. Atheroscler. Suppl. 2004, 5, 125.doi: 10.1016/j.atherosclerosissup.2004.08.033
[5] M. Hirama, M. Uei, Chiral total synthesis of Compactin. J. Am. Chem. Soc. 1982, 104, 4251.doi: 10.1021/ja00379a037
[6] M. Hirama, M. Iwashita, Total synthesis of (+)-monacolin K (mevinolin). Tetrahedron Lett. 1983, 24, 1811. doi: 10.1016/S0040-4039(00)81777-3 [7] 郭宗儒, 首创的洛伐他汀和后继药物. 药学学报, 2015, 50, 123.
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!
心血管疾病是指心脏与血管的疾病,常见的病症包括冠心病、风湿性心脏病、脑血管病等,严重危害人类的生命健康。世界卫生组织统计数据表明[1],心血管疾病是全球的头号死因,每年死于心血管疾病的人数多于其它死因。其中,冠心病是最常见的心血管疾病之一,全称为冠状动脉粥样硬化性心脏病,是冠状动脉血管发生动脉粥样硬化病变而引起血管腔狭窄或阻塞,造成心肌缺血、缺氧或坏死而导致的心脏病[2]。它与吸烟、酗酒、肥胖、缺乏运动以及不健康的饮食等存在密切联系,此外,血液中的胆固醇含量过高同样会增加罹患疾病风险。
图1 动脉粥样硬化示意图(图片来源于维基百科)
胆固醇对于构成生命不可或缺,它广泛存在于动物体的细胞膜,同时也是人体合成类固醇激素,例如醛固酮 (aldosterone)、皮质醇 (cortisol)、性激素 (sexhormone)与维生素D以及胆酸 (cholic acid, 胆汁的重要成分)的前体物质。早在1784年,胆固醇就由法国医生从胆结石中发现,其英文名cholesterol 源自希腊文的chole (胆汁)加上 stereos (固体),并且由于其化学结构中含有羟基,因而以 -ol 后缀结尾,故称为胆固醇。自1910年德国化学家A. Windaus发现冠心病患者动脉壁粥样斑块内含有大量胆固醇,并提出胆固醇的升高与疾病存在内在关联以来,诸多科学家开启胆固醇与冠心病之间联系的循证之路,最终确定血液中的高胆固醇含量会增加罹患动脉粥样硬化的风险。1928年,凭借在甾体固醇领域的先驱性研究成果,Windaus获得Nobel化学奖。随后,科学家围绕胆固醇的结构解析、生物合成、化学合成以及分子调节机制等热点领域又开展了大量原创性研究,相关成果更是多次斩获Nobel奖桂冠[3]。
图2. A. Windaus与胆固醇的化学结构
前文已经提到,尽管胆固醇已经发现多年,然而,其化学式C27H46O却直到1888年才由奥地利化学家F. Reinitzer正式确定。20世纪初,化学家们只能确定胆固醇的分子结构中存在一个羟基与双键。显然,这距离胆固醇准确的化学结构相差甚远,真正的突破则来自德国化学家H. Wieland对于胆汁酸 (bile acid)及相关物质的结构研究。1912年,Wieland成功从胆汁中分离到了三种具有相似结构的胆汁酸成分,并发现这类化合物在结构上与胆固醇具有相似性,后来Wieland凭借对胆汁酸及相关物质的研究获得1927年Nobel化学奖。在Wieland的研究基础上,1919年Windaus通过对胆固醇进行化学降解、脱水、氢化等处理,成功将其转化为胆烷酸 (cholanic acid ),由此正式确定胆汁酸与胆固醇具有相同的碳骨架[4]。
图3 胆固醇与胆烷酸的结构相似性
虽然Wieland与Windaus等人通过不懈努力初步确定了胆汁酸及胆固醇的化学结构,然而,后来随着X-射线晶体学的发展,1932年英国著名化学家D. Hodgkin与其导师J. D. Bernal,(著名晶体学家)共同对甾体化合物原有的结构进行修正;Wieland则据此修正了早期公布的胆汁酸结构并成为后来全世界公认的胆汁酸结构式。自1934年起,D. Hodgkin等人采用X-射线衍射技术,对数百种甾体化合物的结构进行研究,并于1937年确定了胆固醇的结构,后来该小组相继完成涉及青霉素 (1945年)、维生素B12 (1954年)以及胰岛素 (1969年)等在内的诸多复杂生化物质的三维结构解析,因其在“利用X-射线技术解析重要生化物质结构”领域的杰出贡献,D. Hodgkin被授予1964年度Nobel化学奖,成为继M. Curie母女之后第三位获得Nobel化学奖桂冠的女性科学家。
图4 H. Wieland与D. Hodgkin
胆固醇是真核生物细胞膜的重要组分,同样是形成多种生物活性物质的前体,因此,其生物合成与代谢转变以及转运一直是生物学家关注的焦点之一。20世纪中期,德裔美国生物化学家K. E. Bloch长期致力于胆固醇的生物合成研究,经过长期的努力,K. E. Bloch成功阐明生物体以乙酰辅酶A (acetyl-CoA)作为原料合成胆固醇的机制。到20世纪50年代末,科学家已经明确胆固醇合成通常经历三个阶段,即乙酰辅酶A→甲羟戊酸 (mevalonic acid, MVA)→鲨烯 (squalene)→胆固醇。首先,乙酰辅酶A经历自身缩合与还原,形成甲羟戊酸,之后,甲羟戊酸进一步转化为活化的异戊二烯中间体,通过该中间体,形成鲨烯砌块,鲨烯经鲨烯单氧化酶 (squalene monooxygenase)作用,选择性地氧化为2,3-环氧鲨烯 (2,3-epoxysqualene),并在环合酶 (cyclase)的作用下,发生分子内环化过程,获得羊毛甾醇分子,该分子在动物与真菌合成类固醇化合物的过程中起重要作用,最后,经历复杂的氧化、还原以及去甲基化等过程,最终获得胆固醇[5]。需要说明的是,在K. E. Bloch研究的同时,另一位德国生物化学家F. Lynen确定了乙酰辅酶A的结构及其与脂肪酸的关系。1964年,Nobel奖委员会将生理学或医学奖授予K. E. Bloch与F. Lynen,以表彰其在发现胆固醇与脂肪酸的代谢机理研究调控作用领域的贡献;1985年,美国两位科学家M. Brown与J. L. Goldstein再次凭借在胆固醇代谢的调控方面的发现分享了当年的Nobel生理学或医学奖。
图5 胆固醇的生物合成路径示意图
20世纪40年代末,因甾体类化合物 (例如cortisone)具有良好的消炎以及免疫抑制等药理作用,带给药企巨大的商业利益,因此,许多科学家获得相关药企的资助,从事甾体化合物的合成研究。使胆固醇的化学合成受到全世界众多科学家的关注,他们“八仙过海,各显神通”先后通过不同策略与路线设计,实现胆固醇的全合成,充分展示出合成化学的魅力。受限于篇幅,本文仅介绍“有机合成大师”R. B. Woodward团队的胆固醇全合成路线设计[6]。
1951-1952年,R. B. Woodward等人以简单的1,4-取代苯醌1作为起始原料,通过近40步的反应,最终合成胆固醇。首先,采用Diels-Alder反应,立体专一性地获得顺式环加成产物2,再通过烯醇负离子中间体质子化的方式,将产物2构型进行部分转化,形成反式中间体3,将中间体3的羰基还原,并通过酸性条件下的水解过程,将烯醇甲醚转化为羰基,并进一步消除水分子,获得α,β-不饱和酮5。在羟基转化为乙酸酯后,通过金属锌的作用,顺利去除乙酰氧基,获得中间体6,再通过Claisen缩合反应,将醛基引入6中,形成砌块7,接下来,R. B. Woodward小组通过Michael加成反应,进一步在砌块7中引入支链结构,并借助Robinson环化反应,构建起新的六元环结构,同时,伴随醛基的消除,获得关键砌块9。
图6 R. B. Woodward全合成胆固醇路线-1
随后,R. B. Woodward等人选择OsO4作为氧化剂,选择性将双键氧化为邻二醇后,再引入缩酮基团,并通过催化加氢过程,产生中间体11。接下来,该小组再次通过Claisen缩合,将醛基引入中间体11,并进一步与甲基苯胺缩合,形成具有烯胺结构的化合物12,进而通过烯胺单元,占据羰基的其中一个α-反应位点。为进一步构建新的环系结构,R. B. Woodward小组巧妙地去除羰基γ-位的质子,并通过共振过程,在其α-位置采用Michael加成策略,引入具有末端氰基的支链结构,并进一步水解,将氰基转化为羧基。与此同时,伴随烯胺结构的水解与消除过程,形成砌块13。并进一步通过乙酸钠促进的环化过程,形成砌块14。之后,化合物14的在甲基溴化镁作用下,通过开环过程,转化为二酮15。并进一步通过碱性条件下的羟醛缩合,将二酮15进行关环,转化为α,β-不饱和酮16,16在高碘酸作用下,去除缩酮保护基,并将邻二醇结构进一步氧化,形成二醛中间体17。通过二醛17的分子内缩合与脱水过程,形成中间体18,并将醛基氧化为羧基后,再与重氮甲烷作用,进而将羧基转化为甲氧羰基,接下来,采用选择性氢化步骤,将中间体18的不饱和结构还原,获得化合物19,将19中酯基水解后,继而转化为酰氯,并通过酰氯进一步转化为乙酰基,形成中间体20。最后,通过Grignard试剂亲核加成以及酸性条件下的羟基消除与双键的还原过程,引入脂肪族长链结构,获得化合物21。在去除乙酰基保护之后,形成砌块22,接下来,再通过多步反应过程,成功构建六元环内双键,最终完成胆固醇的全合成。
图6 R. B. Woodward全合成胆固醇路线-2
除R. B. Woodward等人设计的合成路线外,同时期英国另一位著名有机化学家R. Robinson,(因对植物生物碱的研究获得1947年Nobel化学奖) 采用与R. B. Woodward完全不同的起始原料与策略,同样顺利完成胆固醇分子的全合成[7]。虽然珠玉在前,攀登胆固醇合成高峰的步伐却从未停止,后来Bauer (1966年)、Rychnovsky (1992年)与Covey (2002年)等人继续设计出不同的全合成方案,进而顺利实现胆固醇的外消旋体及其对映体的全合成[8]。
适量的胆固醇对维持人体正常的生理功能具有重要意义,然而,过多的胆固醇则会对人体健康带来诸多不利影响,特别是增加心血管疾病的患病风险。自从1784年胆固醇首次被发现以来,围绕它的研究跨越几个世纪并且成果斐然,同时,涉及胆固醇的研究以及多次斩获Nobel奖,特别是胆固醇的生物合成研究成果为他汀类降血脂药物 (statins)的研发奠定了基础。尽管如此,胆固醇似乎仍有许多未知的科学秘密有待研究,未来是否有更多关于胆固醇的研究成果我们拭目以待。
(b) R. B. Woodward, F. Sondheimer, D. Taub, J. Am. Chem. Soc. 1951, 73, 3547. doi: 10.1021/ja01151a555.
(c) R. B. Woodward, F. Sondheimer, D. Taub, J. Am. Chem. Soc. 1951, 73, 3548. doi: 10.1021/ja01151a556.
(d) R. B. Woodward, F. Sondheimer, D. Taub, K. Heusler, W. M. Mc Lamore, J. Am. Chem. Soc. 1952, 74, 4223. doi: 10.1021/ja01137a001.
[7] G. Mulheirn, Robinson, Endeavour, 2000, 24, 107. doi: 10.1016/S0160-9327(00)01310-7. [8] (a) W. S. Johnson, J. A. Marshall, J. F. W. Keana, et al. Tetrahedron, 1966, 22, 541. doi: 10.1016/S0040-4020(01)90961-5.(b) S. D. Rychnovsky, D. E. Mickus, J. Org. Chem. 1992, 57, 2732. doi: 10.1021/jo00035a036.
(c) X. Jiang, D. F. Covey, J. Org. Chem. 2002, 67, 4893. doi: 10.1021/jo025535k.
维生素是生物体必需的微量营养成分,通常无法由有机体自身产生,需要通过膳食等手段由外源获得。维生素虽然无法像糖类、蛋白质以及脂肪那样能够产生能量,然而,却同样可以对生物体的新陈代谢起调节作用。众所周知,缺乏维生素能够导致诸多的健康问题,例如,维生素A缺乏会导致夜盲症与干眼症,维生素C缺乏会导致坏血病,维生素D缺乏则会导致佝偻病等,因此,适量摄取维生素对维持身体的健康至关重要。近年来,各种维生素类营养保健品层出不穷,其中有一种名为“生物素”的产品宣称,对于头发与指甲生长、皮肤修复以及营养物质代谢极为关键。
图1商品化的生物素类营养保健品
所谓生物素,其实是维生素B7,又称为维生素H或辅酶R,属于水溶性B族维生素的成员,其拥有的众多名称与其横跨四十载的研究历史密不可分。1916年,生物化学家W. G. Bateman发现鼠类在食用大量生的鸡蛋白后,会表现出脱毛与皮肤损伤的症状。1936年,德国化学家F. Kögl与B. Tönnis由煮熟的蛋黄中分离出一种结晶物质,能够促进酵母菌的生长,并将其命名为“生物素”(Biotin)。不久之后,美国科学家P. György在1937年发现一种能够防治皮炎与脱毛 (采用生蛋清喂养大鼠诱发)的物质,因此,采用德文中皮肤“Haut”与毛发“Haar”的首字母,将该物质命名为“维生素H”。需要说明的是,美国生物化学家F. E. Allison等人在1933年同样由蛋黄中分离出一种对于豆类根瘤菌生长至关重要的物质,并提出这一物质是一种与呼吸相关的辅因子 (cofactor for respiration),于是,将其命名为“辅酶R”。直到1940年,P. György与V. Vigneaud等人通过实验证实,所谓生物素、辅酶R以及维生素H均为同一物质。同时,由于生物素为化学家发现的第七种B族维生素,因此,将其命名为维生素B7[1]。
图2. V. Vigneaud (左)与P. György (右)
生物素是机体代谢中羧化与脱羧反应过程相关酶体系中的辅助因子,能够参与羧化反应、糖原异生以及蛋白质的合成。因而,生物素是生命、上皮组织生长与维持以及繁殖所必需的物质。此外,生物素对于机体内的碳水化合物、脂肪酸、蛋白质以及核酸代谢均发挥重要作用[2]。多数情况下,人们更关注其营养保健功能,目前普遍认为生物素对于维持皮肤、指甲及毛发的正常功能具有积极作用,缺乏生物素则导致毛发变细、失去光泽,白发与脱发,皮炎湿疹等皮肤症状。尽管如此,生物素因其来源极为广泛 (存在于蛋黄、坚果、豆类、鱼类以及水果在内的多种食物中),因此,日常饮食即可满足所需,无需额外补充。然而,同样有研究表明,糖尿病、妊娠以及营养不良时,会导致生物素缺乏,这时便需要适当的外源补充。
图3富含生物素的食物 (图片来源于网络)
自然界中的植物与细菌均能够合成生物素以满足正常的生理功能,并且,植物与细菌在生物素的合成过程中,均采用相同的起始原料与反应路径。即采用L-丙氨酸1与庚二酸2作为起始原料,首先,通过缩合过程,形成7-羰基-8-氨基壬酸3,之后,通过羰基的转氨过程,形成7,8-二氨基壬酸4。接下来。在脱硫生物素合成酶 (dethiobiotin synthase,DBS)作用下,通过进一步的缩合,获得去硫生物素5,最后,在生物素合成酶作用下,获得最终产物[3]。
图4生物素的生物合成路径
前文已经提到,生物素在脂肪酸生化合成、糖酵解等多种生化反应过程中起重要作用,人体缺乏生物素则会引起多种营养性疾病。不仅如此,家禽缺乏生物素同样会导致生长迟缓以及发育不良甚至死亡,尤其是随着家禽与畜牧业的不断发展,生物素作为饲料添加剂的需求量激增。因此,生物素的化学合成研究具有必要性与迫切性。
目前为止,文献报道的生物素的全合成策略基本分为两种,即对映选择性合成与立体专一性合成。前者采用富马酸作为原料,通过不对称合成或其他手性技术,构建分子中的三个手性碳中心,并经历多步反应,最终获得足够光学纯度的目标产物。另一策略则是采用L-半胱氨酸等手性化合物作为起始原料,借助原料中固有的手性碳原子,通过结构变换,进而构建生物素分子。
1946年,Roche公司的研究人员Goldberg 与Sternbach报道首例生物素的不对称全合成,该团队采用富马酸1作为原料,首先经历双溴化、苄胺对卤原子的亲核进攻以及后续与光气的进一步反应,获得中间体2,通过2的分子内脱水过程,形成酸酐化合物3。3在乙酸酐存在的条件下,采用金属锌对酸酐进行部分还原,产生外消旋体化合物4,并通过4的进一步还原,获得化合物5。之后,采用Grignard试剂,将侧链引入环骨架中,并通过后续的消除反应,形成关键砌块6。通过6中双键的立体选择性氢化过程,获得砌块7,并通过后续酸性条件下的分子内环化过程,获得砌块8。接下来,通过手性樟脑磺酸盐参与的拆分与分步结晶过程,进而获得关键的手性砌块9,最后,采用丙二酸二乙酯钠盐参与9的亲核开环以及后续酸性条件下的去保护步骤,最终获得手性纯的生物素[4]。需要说明的是,Goldberg 与Sternbach团队的开创性研究,为(+)-生物素工业化合成路线的设计奠定了坚实的基础,因此,文献中将这一路线称为Hoffmann-La Roche (HLR)路线。2001 年,陈芬儿课题组对HLR 路线进行改进,开辟出一条更加完善的工业化合成路线[5]。
图5生物素的首次全合成 (HLR路线)
除不对称合成之外,合成化学家同样围绕另一种直接由手性原料开始的全合成设计方案,进行较为细致的研究。其中,最具代表性的设计方案由Clercq等人在1994年报道。该小组采用L-半胱氨酸作为起始原料,首先与苯甲醛经历缩合以及成环过程,并通过氨基保护,获得五元环砌块1。之后,通过对五元环砌块1中羧基的还原与再氧化步骤,形成具有醛基的中间体2。同时,该小组通过Wittig反应,将中间体2中的醛基转化为烯基,并通过钠/液氨体系还原,释放出巯基,获得中间体3,中间体3随即进行分子内脱水关环过程,形成大环硫内酯4。接下来,在去除Boc保护基之后,通过游离氨基与苯甲醛之间的还原胺化过程,引入苄基,再与NaN3反应,获得得到砌块5。最后,将5在高压釜中进行热解,获得两种混合物6,并通过酸性条件下的去保护步骤,最终完成 (+)-生物素的全合成[6]。
图6通过L-半胱氨酸全合成生物素
生物素除作为营养添加剂外,同样能够广泛地应用于生化研究领域。例如,鸡蛋中的卵白素会与生物素进行几乎不可逆的强烈结合,借助这一特性,可以将生物素与标靶分子结合,并采用卵白素进行检验。此外,生物素在多种生理与病理过程中表现出低毒性,因而可以设计成为具有靶向选择性的药物载体,将抗癌药物有效地传递至肿瘤细胞。目前,含生物素的小分子已发展成一类具有良好应用价值的生物功能分子,并且,这类化合物具有合成简便、易于官能团化与特异性强等优点[7]。
生物素是生物生长发育过程中的一种十分重要的营养物质,能够参与机体的多种新陈代谢活动,并广泛应用于食品、医药、饲料、发酵等领域,同时,对工农业生产以及人们的日常生活产生重要的影响。因此,近年来受到化学家与生物学家的青睐。此外,科学家已经开始发现生物素分子同样存在其它全新的功能。由此可见,在未来的相关研究中,生物素将作出更为重要的贡献。
越南战争是二战以来美国参战人数最多的战争,影响极为深远。战争期间,越南人民运用热带丛林组织游击战给美军带来重创,美军为了对付神出鬼没的游击队,他们根据英军早期抗击游击部队的经验,从飞机上喷洒出大量化学物质,导致山上的树林大面积落叶,草木枯死,并且数年内植被都难以恢复,最终使得敌对目标失去天然保护屏障。尽管美军为谋求战争胜利,不惜破坏大量植被,但最终美国还是在越战中不堪消耗,逐步撤军并宣告战胜失败。几十年过去了,越南人民却依然饱受战争所带来的创伤,特别是化学污染问题让他们陷入无尽的噩梦,这也时刻警醒我们,禁止化学武器应当是人类的共识。
图1 化学物质毒害后的植被(图片来源于网络)
为了破坏越南游击队的丛林庇护,以及削弱越共的作战能力,美军专门制定了“除草剂方案(Herbicidal warfare)”,并着手实施所谓的“牧场手行动(Operation Ranch Hand)”。为此,美军需要使用大量的除草剂,这些除草剂被装在大容量(55美制加仑,约210升)的桶中,以蓝、白、绿等不同颜色进行标识并冠以蓝剂(Agent Blue)、白剂(Agent White)、绿剂(Agent Green)等名称,这些颜色各异的除草剂统称为彩虹除草剂(Rainbow Herbicides)。需要说明的是,这些除草剂的成分和作用不尽相同,例如蓝剂的主要成分是二甲胂酸(dimethylarsinic acid),用来使农作物减产,进而切断游击队的补给;而白剂和绿剂的成分和作用则与橙剂类似,经常在橙剂短缺时作为替代品。数量众多的除草剂中,被美军使用最多的就是橙剂,有数据表明,1961-1971年间,美军共喷洒超过八千万升的橙剂。
图2 装有大量橙剂的桶堆(图片来源于网络)
事实上,橙剂并非美军首次使用,早在1948-1960年间英军就曾使用橙剂对抗马来亚当地的游击部队。橙剂威力巨大但其实成分却并不复杂,它主要由两种名为2,4,5-三氯苯氧乙酸(2,4,5-Trichlorophenoxyacetic acid,简称2,4,5-T)和2,4-二氯苯氧乙酸(2,4-Dichlorophenoxyacetic acid,简称2,4-D)的物质等比例混合而成,又由于生产工艺等原因,另一种更加臭名昭著的“二噁英”类强致癌物质2,3,7,8-四氯二苯并二噁英(2,3,7,8-Tetrachlorodibenzodioxin,TCDD)作为杂质被混合其中。前两种物质本来都属于植物生长调节剂,可以防止落花落果,可一旦大剂量使用反而会起到相反的效果,因此美军为达目的不得不将超大剂量的橙剂喷洒在植被表面。
图3 橙剂的主要化学成分
TCDD被认为是二噁英类化合物中毒性最强的一种,因此大部分的动物实验研究皆使用TCDD作为检测二噁英类化合物毒性的标准。所谓二噁英(dioxin),其实是1,4-二氧杂环己二烯类化合物,多数含有多氯二苯并呋喃(polychlorinated dibenzofuran,PCDF)结构,因其良好的脂溶性,这类物质很容易在生物体内富集。此外,二噁英类物质具有显著的细胞毒性,还能侵入DNA分子,诱发突变,因此具有致畸与致癌等作用。国际癌症研究机构也确认二噁英对人体有明确致癌性,属于1类致癌物。橙剂中的TCDD看似含量不高,但却危害极大,美军当年逞一时之快,滥用橙剂也给战后的越南人民以及在越战期间服役的美国军人带来持久不能消除的后遗症,还引发了影响巨大的集体诉讼。
1973年美军撤离越南,越战也逐渐进入尾声,越南人民开始期盼战后平静的生活。然而,战区的人们却开始患上各种奇怪的疾病,痛苦不堪,更难以预料的是他们的后代出现了很多畸形儿以及智力障碍的孩童。结合当时美军的除草剂作战方案,越南很快将矛头指向橙剂,更准确来说应该是橙剂中的TCDD成分,因为他们在20世纪70年代越南南部妇女的母乳中发现高浓度的TCDD。无独有偶,曾经在越南服役过的美国退伍军人,罹患癌症、神经、消化、皮肤和呼吸系统疾病的比率也较常人更高,在这些军人的血液中同样检测出高浓度的TCDD含量。更让人难以接受的是,二噁英造成的影响很可能是长期的,甚至能够延续几代。虽然很多研究都表明越南先天性畸形的情况与橙剂中的二噁英存在重要关联,但美国却坚称并无直接证据可以证明橙剂影响了几代人的健康。
图4 饱受橙剂伤害的越南儿童(图片来源于网络)
虽然美国在2012年制订一项计划,决定花费900万美元帮助越南残障民众,也有部分名人和团体成立基金会对这些残障孩童提供帮助,但整体还是杯水车薪,橙剂对儿童及其家庭以及整个社会造成的伤害永远无法弥补。另一方面,橙剂受害者为了自身合法权益,战后提出一系列的诉讼和法律问题,代表性的就是美国越战退伍军人自1978年以来针对以陶氏化工和孟山都为代表的橙剂生产公司提起的集体诉讼,可最终这些退伍军人的权益也没能得到很好保护。虽然1991年,美国国会颁布《橙剂法》表示曾在越南暴露于橙剂或TCDD的退伍军人在一定的条件下“推定”符合资格者,可接受治疗和赔偿,但实际获得治疗和赔款的军人数量我们也无从得知,只知道橙剂对人类以及环境带来的伤害依然还在继续······
现代意义上的化学武器使用始于第一次世界大战,交战双方使用毒气造成了巨大的痛苦,也造成了惨重的战场伤亡。虽然橙剂并不像氯气、光气和芥子气那样给人类直接迅速地带来毁灭性伤害,但它当之无愧也属于化学武器之列,它所造成的危害和影响丝毫不亚于上述化学物质。化学武器所造成的滥杀滥伤后果实在触目惊心,我想任何人都应该珍爱和平,尤其是化学工作者更应当警钟长鸣,减少和清除化学武器应当是全人类共同追求的目标。
本文作者:Sunny华
彼岸花,又称为曼珠沙华 (manjusaka),是一种原产于中国并广泛分布在长江中下游以及西南部分地区的多年生草本植物,也是东南亚地区常见的园林观赏性植物。有趣的是,民间以及佛教中有诸多关于彼岸花的传说,人们赋予它多种含义,并将它创作进入影视与文艺作品中。事实上,彼岸花学名为“红花石蒜”,为石蒜属植物,其英文名“Lycoris radiata”中“radiata”一词意为辐射状,形象表明了花朵盛开的娇艳形状。除园艺观赏价值外,石蒜属植物中含有多种重要的生物碱,因此,很早就石蒜属植物作为药用植物,应用于治病疗伤,其中含量较高的活性生物碱则是石蒜碱 (Lycorine)。
Fig. 1娇艳似火的彼岸花 (图片来源于网络)
石蒜碱的药用历史十分悠久,明代李时珍《本草纲目》中曾记载:石蒜不仅具有解毒、祛痰、利尿、催吐等多种功效,还能够用于咽喉肿痛、痈肿疮毒、瘰疬(感染性外科疾病)与水肿等疾病的治疗。然而,石蒜属植物富含多种生物碱,成分较为复杂,直到1877年,主要成分石蒜碱才首次通过溶剂提取法分离获得。此外,石蒜属植物中还存在其他类型的生物碱,并且同样具有独特的生物活性,例如,加兰他敏 (Galantamine)能够应用于治疗轻度至中度Alzheimer症;力可拉敏 (Lycoramine)能够用于治疗小儿麻痹后遗症。同时,生物活性研究表明,石蒜碱及其衍生物具有抗炎、抗病毒、抗疟疾、抑制乙酰胆碱酯酶、保护心血管以及诱导肿瘤细胞凋亡等多种作用[1]。
Fig. 2石蒜属植物含有的主要生物碱
尽管石蒜碱是石蒜属植物中含量较高的生物碱,然而,其含量却仅有干质量的1%,而其生物合成过程却尽显大自然的鬼斧神工。研究表明,酪胺 (tyramine)与原儿茶醛 (protocatechuic aldehyde)是石蒜碱生物合成的起始原料。首先,二者经还原胺化过程,获得nor-belladine中间体 (I),之后,通过酚羟基的选择性保护,获得OMe-nor-belladine (II)。该中间体在生物酶的作用下,进行一系列相关的立体专一性转化,最终形成复杂的多环结构。首先,中间体II在细胞色素P450 (cytochrome P-450)作用下,经历两次单电子氧化过程,形成双酚氧自由基III,并随即进行相应的自由基偶联过程,形成关键产物IV,同时伴随芳构化过程与亲核氮原子的δ-共轭加成,进而完成全部环状骨架的构建。其中,六元环中双羟基结构的构建则是通过首先还原双键,之后进行烯丙位氧化而实现。最后,通过氧化环化步骤,完成Lycorine分子的生物合成[2]。
Fig. 3石蒜碱的生物合成
尽管石蒜碱具有良好的药用价值,然而,由于其天然含量过低,同时提取技术尚未成熟。因此,多数情况下,提取出的石蒜碱均为多种生物碱的混合物,因而,必须进行进一步的分离纯化。同时,相关的纯化的过程同样较为复杂繁琐,存在有机溶剂消耗量大与环境污染严重等问题。鉴于上述的不利因素,诸多化学家一直努力致力于完成石蒜碱的全合成研究,并涌现出多种不同的设计方案。
外消旋石蒜碱的全合成工作,最早由Boeckman等人在1988年首次完成。这项研究在学术界认定为最“优雅”的石蒜碱合成路线。其中,作者巧妙地设计,并通过环丙基酰亚胺正离子A(cyclopropyl acyliminium ion)的扩环重排过程,构建出后续Diels-Alder反应所需的关键双烯体3,并进一步经历去保护与双键异构化过程,形成中间体4,之后,中间体4通过分子内SN2反应过程,形成另一关键中间体B。中间体B在惰性溶剂中回流,继而通过Diels-Alder反应,顺利完成分子中所有环系的构建。最后,采用LiAlH4进行相应的还原去保护过程,即可获得外消旋石蒜碱产物[3]。
Fig. 4外消旋体石蒜碱的全合成路线
数年之后,对于石蒜碱的首次不对称全合成研究工作,由Schultz等人在1996年完成。然而,该小组获得的却是其左旋光学异构体,并非天然存在的右旋石蒜碱。尽管如此,Schulz小组的工作仍然充满亮点,并对后续右旋石蒜碱的不对称全合成研究提供了重要的指导。该小组选择脯氨酸衍生的酰胺1作为原料,并采用该课题组在1988年发展的非对映选择性“Birch还原-烷基化反应”方法学策略[4],将羟乙基结构成功引入相应底物中,并获得中间体2,随后,通过经典的Mitsunobu反应将羟基转化为叠氮基。同时,将乙烯基甲醚结构单元进行水解,并进一步通过互变异构化过程,转化为羰基结构单元。接下来,经历一系列复杂的转化过程,完成关键中间体3的构建,最后,通过AIBN与n-Bu3SnH引发的自由基环化过程,进而完成全部环系的构建。最终,Schulz团队通过15步反应,以1.4%的总产率获得(+)-Lycorine。[5]值得一提的是,直到2009年,天然 (-)-Lycorine的不对称全合成研究,才由Tomioka团队首次完成[6]。
图5石蒜碱的首次不对称全合成路线
以彼岸花为代表的石蒜科植物在我国分布较为广泛,石蒜碱是其中的主要成分,现代研究表明,石蒜碱及其衍生物具有多种潜在的药理作用。因而,进行此类化合物的研究能够较好地发挥我国的资源优势,充分利用自然资源,创造巨大的经济效益;另一方面,通过对石蒜碱及其衍生物的进一步研究,最终研发出对于严重危害人类健康的相关疾病,能够进行有效治疗的药物分子,同样具有重大的社会效益。因此,未来石蒜碱化学的研究将充满无限潜力。
110, 7828. doi: 10.1021/ja00231a038.
[5] A. G. Schultz, M. A. Holoboski, M. S. Smyth, J. Am. Chem. Soc. 1996, 118, 6210. doi: 10.1021/ja9606440. [6] K. Yamada, M. Yamashita, T. Sumiyoshi, K. Nishimura, K. Tomioka, Org. Lett. 2009, 11, 1631. doi: 10.1021/ol9003564.本文作者:Sunny华
德国柏林工业大学M. Oestreich课题组采用镍/锌催化体系,成功实现α-氰基活化的烷基亲电底物与氯硅烷间的还原交叉偶联反应方法学。其中,金属锌作为化学计量还原剂。通过上述偶联过程,该小组采用两种不同类型的亲电底物,顺利完成C(sp3)-Si键的构建。而之前文献报道的C(sp3)-Si键构建的策略中,则选用碳亲核试剂与硅亲电试剂或碳亲电试剂与硅亲核试剂的组合。
Nickel-Catalyzed Reductive C(sp3)-Si Cross-Coupling of α-Cyano Alkyl Electrophiles and Chlorosilanes
L. Zhang,M. Oestreich, Chem. Int. Ed.2021, ASAP. doi: 10.1002/anie.202107492.
过渡金属催化下,通过碳亲核试剂/硅亲电试剂或碳亲电试剂/硅亲核试剂两种组合方式的交叉偶联过程,进而完成C(sp3)-Si键构建的方法学策略,近年来已经取得较大进展[1]-[5]。然而,该方法学的研究仍存在诸多挑战 (Scheme1, a)。例如,涉及不对称C(sp3)-Si键形成的反应策略[4],目前仅局限于铜催化条件下,活化的烷基亲电底物与带有硼基团的硅前亲核试剂 (boron-based silicon pronucleophile)之间的SN2型反应[4]以及非活化型烷基亲电底物与金属化的硅试剂在无催化剂存在下的取代反应[6]。C(sp3)-Si键构建的另一挑战在于直接将碳亲电试剂与硅亲电试剂应用于还原偶联过程,而无需将相应的偶联参与物进行预先的金属化处理。2020年,兰州大学舒兴中教授课题组报道采用烯基以及芳基三氟甲磺酸酯/卤代物与氯硅烷之间的还原C(sp2)-Si交叉偶联反应方法学 (Scheme1, b)[7],反应过程中需要采用Ni(II)-联吡啶配合物作为催化剂前体,其中,选择金属锰作为化学计量还原剂。尽管该方法具有良好的应用价值,然而,必须选择带有烯基取代的氯硅烷,进而增强底物与Ni催化剂的配位性能。然而,与此相关的形成C(sp3)-Si键的合成策略,目前尚未有相关的文献报道。基于上述研究报道,Oestreich课题组成功开发出通过Ni催化的活化烷基亲电底物与一系列氯硅烷底物之间的交叉偶联反应方法学 (Scheme1, c)。
作者采用α-三氟甲磺酰氧基腈 (α- triflyloxy nitrile)1a与乙烯基取代的氯硅烷2a作为模型底物,进行相关反应条件的优化筛选 (Table 1)。通过对Ni催化剂、配体、还原剂以及溶剂的进一步筛选,确定最佳的反应条件为:采用(Ph3P)2NiCl2/L3催化体系以及Zn作为还原剂,在N,N-二甲基乙酰胺 (DMA)溶剂中,反应温度为室温,最终以76%的分离产率获得相应目标产物 (entry 1)。同时,通过控制实验的研究表明,化学计量的还原剂锌以及Ni催化剂对于反应的顺利进行尤为重要,并且,研究发现,在无配体加入时,则反应产率较低 (entries 2-4)。并且,选择其他联吡啶配体L1与L2以及三联吡啶L4,目标产物的收率则均低于采用L3作为配体 (entries 5-7),作者进一步发现,采用1,10-邻二氮菲L5作为配体时,能够观察到偶联产物产率急剧降低 (entry 8)。接下来,作者采用金属锰代替锌作为还原剂,同样能够观察到较低的反应收率 (entry 9)。并且,该小组发现采用带有卤素离去基的α-氰烷基亲电底物,同样能够获得良好的反应收率 (entries 10-11)。此外,作者进一步发现,适当地升高或降低反应温度,对于反应收率无显著影响 (entries 12-13)。
在获得最佳的反应条件之后,作者首先考察氯硅烷的底物适用范围 (Scheme 2),研究表明,三乙烯基取代的氯硅烷底物2b能够获得与模型底物2a相近的产物收率。然而,在三烷基取代的氯硅烷2c与2d底物中,尽管缺乏能够与催化剂配位的乙烯基,却同样能够顺利地参与上述偶联过程,并获得中等程度的反应收率 (分别为33%与40%)。这与舒兴中教授报道的实验结果[8]相反,并且,尤其对于通常用作Ni催化还原交叉偶联反应添加剂的Me3SiCl (2d)底物,在上述最佳的反应条件下,同样能够获得相应的C-Si偶联产物[9]。此外,上述反应条件对于硅原子中带有苯基或叔丁基取代的氯硅烷底物而言,则无法获得预期产物,然而,却能够获得相应的二硅烷 (disilane)与二硅氧烷 (disiloxane)产物。
接下来,该小组采用乙烯基氯硅烷2a作为亲电硅底物,对α-三氟甲磺酰氧基腈的底物适用范围进行进一步研究 (Scheme 3)。实验结果表明,芳环中带有卤素取代基的α-三氟甲磺酰氧基腈底物,能够获得中等产率的目标产物3ba与3ca,并且,未观察到芳卤片段参与偶联过程,形成C(sp2)-Si键。此外,上述反应条件对于带有呋喃基取代的α-三氟甲磺酰氧基腈底物,同样能够获得相近收率的目标化合物 (3da,65%)。同时,该小组发现,增加脂肪链的长度,同样能够获得较为理想的实验结果 (3ea,73%)。之后,作者同样对偶联过程中α-三氟甲磺酰氧基腈底物中的官能团兼容性进行深入考察,结果发现,上述反应条件对于一级溴代烷基 (1f)与一系列烷氧羰基官能团取代的α-三氟甲磺酰氧基腈底物 (1g–1j)以及具有不饱和烯键的α-三氟甲磺酰氧基腈底物 (1k与1l)均能够良好地兼容,并获得中等至良好的产物收率。然而,作者进一步发现,上述反应条件对于线性烷基取代的α-三氟甲磺酰氧基腈底物,则仅获得较低的反应收率 (3ma,36%)。然而,对于二级与三级烷基取代的α-三氟甲磺酰氧基腈底物,却能够表现出良好的反应活性 (3na–3ra)。
为阐明合理的反应机理,作者进行一系列相关的控制实验研究。首先,为确定反应过程中是否涉及自由基中间体,作者将过量的TEMPO加入至上述的模型反应体系中,最终,作者观察到,反应收率几乎并未受影响 (Scheme 4,top)。接下来,该小组进一步采用环丙基取代的α-三氟甲磺酰氧基腈底物1s进行相关的自由基探针实验 (radical-probe experiment),结果发现,尽管产物3sa的收率较低,然而,并未检测到开环产物的产生 (Scheme 4,middle)。同时,作者发现,采用相应的α-溴代腈底物,则观察到同样的实验结果,即获得较低收率的3sa (21%)。同样地,在底物1k与2a之间的交叉偶联反应中,并未观察到竞争性的自由基环化过程 (Scheme 3,3ka)。基于上述事实,能够排除反应通过自由基中间体进行的可能性。更为关键的是,该小组选择99% ee的手性纯底物(R)-1a在上述标准条件下进行反应时,则能够观察到彻底的外消旋化 (bottom),进而表明上述的还原偶联过程并非立体专一性反应[10]。
基于上述实验结果与前期文献报道[11],作者提出一种涉及Ni(0)→Ni(II)→Ni(I)→Ni(III)→Ni(I)→Ni(0)催化循环的机理方案 (Scheme 5)。首先,底物1的C(sp3)-X ( X = OTf, Cl, Br)键与原位形成的Ni(0)配合物通过氧化加成过程,形成烷基Ni(II)中间体,这一机理步骤中,底物将进一步发生外消旋化,尽管缺乏自由基中间体存在的直接证据。接下来,Ni(II)中间体通过Zn的单电子还原过程,获得烷基Ni(I)中间体,该中间体与氯硅烷进行后续的Si-Cl键氧化加成过程,形成烷基(硅基)Ni(III)中间体,之后,经历还原消除步骤,获得相应具有C(sp3)-Si键的目标产物,同时,产生的Ni(I)配合物能够通过Zn的进一步还原,使Ni(0) 配合物再生,进而参与后续的催化循环过程。需要特别指出的是,另一种可能的反应路径,即氯硅烷2的氧化加成先于活化型烷基三氟甲磺酸酯1的氧化加成,目前仍无法排除。
柏林工业大学M. Oestreich教授课题组报道了采用Ni催化剂促进的α-氰烷基亲电底物与氯硅烷之间的还原交叉偶联反应方法学,并顺利实现C(sp3)-Si键的构建。该方法学为首例sp3-杂化的碳亲电试剂与硅亲电试剂之间的还原交叉偶联反应。同时,通过这一策略,能够有效地构建一系列α-硅基腈类化合物。并且,α-硅基腈类化合物能够进一步用于Hiyama交叉偶联反应。此外,将这一全新的偶联策略进一步应用于非活化的烷基亲电底物,并实现不对称催化方式的还原交叉偶联过程,目前仍有待进一步研究。
b) W. Xue, Z.-W. Qu. S. Grimme, M. Oestreich, Am. Chem. Soc. 2016, 138, 14222.doi:10.1021/jacs.6b09596.c) W. Xue, M. Oestreich, Chem. Int. Ed. 2017, 56, 11649.doi:10.1002/anie.201706611.d) H. Hazrati, M. Oestreich, Lett. 2018, 20, 5367.doi:10.1021/acs.orglett.8b02281.e) W. Xue, R. Shishido, M. Oestreich, Chem. Int. Ed. 2018, 57, 12141.doi:10.1002/anie.201807640.
[4] a) J. Scharfbier, H. Hazrati, E. Irran, M. Oestreich, Org. Lett. 2017, 19, 6562. doi: 10.1021/acs.orglett.7b03279.b) J. Scharfbier, B. M. Gross, M. Oestreich, Chem.Int. Ed. 2020, 59, 1577.doi: 10.1002/anie.201912490.
[5] a) M. Takeda, R. Shintani, T. Hayashi, J. Org. Chem. 2013, 78, 5007. doi: 10.1021/jo400888b.b) Z. Huang, R. Ding, P. Wang, Y. Xu, T. Loh, Commun. 2016, 52, 5609.doi:10.1039/C6CC00713A.c) C. Zarate, R. Martin, Am. Chem. Soc. 2014, 136, 2236.doi:10.1021/ja412107b.d) C. Zarate, M. Nakajima, R. Martin, Am. Chem. Soc. 2017, 139, 1191.doi:10.1021/jacs.6b10998.e) B. Cui, S. Jia, E. Tokunaga, N. Shibata, Commun. 2018, 9, 4393.doi:10.1038/s41467-018-06830-w.f) X. Liu, C, Zarate, R. Martin, Chem. Int. Ed. 2019, 58, 2064.doi:10.1002/anie.201813294.
[6] S. Mallick, E.-U. Würthwein, A. Studer, Org. Lett. 2020, 22, 6568. doi: 10.1021/acs.orglett.0c02337. [7] J. Duan, K. Wang, G. Xu, S. Kang, L. Qi, X. Liu, X. Shu, Angew. Chem. Int. Ed. 2020, 59, 23083. doi: 10.1002/anie.202010737. [8] J. Duan, K. Wang, G.-L. Xu, S. Kang, L. Qi, X.-Y. Liu, X.-Z. Shu, Angew. Chem. Int. Ed. 2020, 59, 23083. doi: 10.1002/anie.202010737. [9] N. T. Kadunce, S. E. Reisman, J. Am. Chem. Soc.2015, 137, 10480. doi: 10.1021/jacs.5b06466. [10] J. Scharfbier, H. Hazrati, E. Irran, M. Oestreich, Org. Lett. 2017, 19, 6562. doi: 10.1021/acs.orglett.7b03279 [11] a) A. H. Cherney, N. T. Kadunce, S. E. Reisman, J. Am. Chem. Soc. 2013, 135, 7442. doi: 10.1021/ja402922w.b) X.-G. Jia, P. Guo, J. Duan, X. Shu, Sci. 2018, 9, 640.doi: 10.1039/C7SC03140H .
日常生活中,我们体验着喜怒哀乐等多种情绪变化,通常人们将其归因为心理变化。事实上,我们的情绪变化还与生理因素密切相关,因为人体内某些化学物质的变化也会影响我们的情绪。研究发现,人的大脑会分泌多种能让人感到快乐、安全和成就感的物质,这些物质统称为“快乐激素”,其中最知名的当属多巴胺(dopamine),它是大脑中含量最丰富的儿茶酚胺类神经递质,能帮助传递兴奋及快乐的信息,同时还参与调节多种生理功能。[1]
代表性儿茶酚胺类神经递质:多巴胺、肾上腺素、去甲肾上腺素
多巴胺最早由George Barger和James Ewens等人于1910年在英国伦敦惠康实验室合成,1957年Katharine Montagu首先在人的大脑中鉴定出多巴胺。而它被命名为多巴胺,则因为它的生物合成前体是3,4-二羟基苯丙氨酸(L-多巴)。随后,瑞典科学家阿尔维德•卡尔森(Arvid Carlsson)等人在1958年最早认识到多巴胺具有神经递质的功能,并且多巴胺还是去甲肾上腺素和肾上腺素的前体,凭借对多巴胺以及该物质在帕金森病中的作用研究,他被授予2000年度诺贝尔生理学或医学奖。[2]
阿尔维德•卡尔森及他对多巴胺的研究
前文已经提到,多巴胺是儿茶酚胺类神经递质,大脑中的多巴胺经过突触将信号传送到其它神经细胞,其中有一条涉及“奖赏系统(reward system)”的路径被认为与多巴胺传递快乐信息密切相关。所谓奖赏系统,实际是一组神经结构,旨在维护动机显著性(动机、需求、喜好等)、联想学习和正面情感(尤其是以愉悦感为核心的情感)。换言之,动物和人的中枢神经系统具有奖赏机制来加强和激励对机体有益的行为,以利个体生存和种族繁衍。更深入的研究表明,当大脑发现获得奖励的机会时,它就会释放出多巴胺,大量的多巴胺并不能直接产生快乐感,它更像是一种激励,让我们发现如何才能得到快乐,而且愿意为了获得这种感觉付出努力。简言之,多巴胺的效用是期待奖赏,而不是获得奖赏。[3] (作者注:多巴胺的作用机制涉及复杂的神经学及心理学知识,此处仅作简要介绍,深入理解请参阅相关文献资料。)
大脑中的主要多巴胺路径(图片来源于维基百科)
目前来看,多巴胺可能是最简单的儿茶酚胺类神经递质,其化学结构虽然简单,但在整个儿茶酚胺家族中却占有重要地位,因为它还是合成另外两种神经递质去甲肾上腺素和肾上腺素的前体。生物体内多巴胺的合成是以L-酪氨酸为起始原料,在多种复杂的生物酶共同作用下完成,首先经酪氨酸氧化酶氧化为L-多巴,随后在多巴脱羧酶作用下脱去CO2即可生成多巴胺。多巴胺也可以进一步被氧化生成去甲肾上腺素,最后只需发生酶促的甲基化过程即能得到另一种重要的神经递质——肾上腺素。[4]
多巴胺的降解过程主要有两条不同的路径,其中所涉及的降解酶是相同的,最终的代谢产物也都是高香草酸,两条路径只是中间产物有所差异。具体说来,多巴胺可以首先氧化生成3,4-二羟苯甲酸然后选择性甲基化得到高香草酸,也可以先进行甲基化转化成3-甲氧基酪氨再将氨基氧化生成羧基同样得到高香草酸代谢终产物。[5]
多巴胺的生物合成及降解路径
多巴胺这种神经递质主要负责大脑的情欲、感觉,传递兴奋及开心的信息,基于多巴胺的这一功能,它在医学上被用来治疗抑郁症。近年来,有研究表明帕金森病也与多巴胺分泌不足,因此可以利用其代谢前体L-多巴进行治疗。然而,需要指出的是,多巴胺的分泌也并非越多越好,过多的多巴胺分泌甚至会造成疾病,例如亨丁顿舞蹈症(Huntington’s Disease,HD)患者的四肢和躯干会如舞蹈般不由自主地抽动,造成日常行动不便。
另一方面,多巴胺也与成瘾性之间存在密切联系,吸烟和吸毒都可以增加多巴胺的分泌,使上瘾者感到开心及兴奋。以吸烟为例,香烟中的尼古丁会刺激多巴胺的分泌,从而为吸烟者带来特定的欣喜之感,从吸食的第一根烟开始尼古丁就“绑架”了吸烟者的神经系统,内在的奖赏系统会潜意识地释放积极信号促使更多的尼古丁摄入,甚至给吸烟者带来“吸烟有益”的错觉。尼古丁在体内的半衰期为2-3小时,如果成瘾者停止吸烟,体内尼古丁浓度会迅速降低,就无法继续体验“愉悦”感,并出现戒断症状。事实上,在成瘾之后,尼古丁带来的愉悦感非常有限,吸烟者实际上只是为了避免戒断症状引起的不适才继续吸烟。[6]
多巴胺作为中枢神经系统的重要神经递质,主要参与运动、情感和神经内分泌的调节,因此多巴胺系统是近数十年来神经科学研究的焦点问题之一。特别是近年来,随着生物学、医学、神经学等多学科的迅猛发展,目前人们对多巴胺的合成、受体种类以及作用机制有了更深入了解,这些研究成果有望更大程度上将多巴胺用于药物等造福人类,而其所带来的诸如成瘾性等负面效应我们也需要慎之又慎并做到合理规避。
癌症,又名恶性肿瘤,来源于细胞的不正常增生,且这些增生的细胞可能侵犯身体的其他部分,是一种因控制细胞分裂增殖机制失常而引起的疾病。根据世卫组织最新的数据表明,癌症是全球第二大死因,仅在2015年就造成全球880万人死亡,其中最为常见的癌症是:肺癌、肝癌、结肠直肠癌、胃癌和乳腺癌[1]等。因此,准确诊断癌症并进行针对性治疗至关重要,目前临床治疗手段主要包括外科手术、放疗、化疗等。所谓化疗,指的是用化学药物来杀死癌细胞从而达到治疗癌症的目的,例如紫杉醇就是一种天然的化疗药物。此外,人工合成的化疗药物,例如吉西他滨,目前也在癌症治疗中发挥不可替代的作用。
现代化疗之父西德尼·法伯和化疗药物吉西他滨
吉西他滨的发现
20世纪80年代,美国著名跨国制药公司礼来合成了吉西他滨并将其用作抗病毒药物,然而体外实验过程中却发现它可以杀死白血病细胞,随后人们对其抗癌活性进行了广泛研究并由此发现它极佳的杀死胰腺癌细胞能力。1996年,吉西他滨在美国上市,并获得FDA 批准用于胰腺癌的治疗,随后1998年又获批用于非小细胞肺癌的治疗。凭借抗癌谱广、作用机制独特、毒性反应低、与其他化疗药物无交叉耐药且毒性反应无叠加等特点,目前,吉西他滨已在全球超过90个国家获批使用,成为治疗非小细胞肺癌的一线药物和治疗胰腺癌的“金标准”。[2]
吉西他滨的化学结构及球棍模型
吉西他滨的作用机制
癌细胞的增殖比正常细胞快并且不受控制,因此抗癌药物的作用原理通常是阻断细胞分裂进而抑制癌细胞生长。正常细胞从有丝分裂结束后生长,再到下一次分裂结束的循环过程被称作细胞周期(cell cycle)。它通常可划分为分裂间期(I期)和分裂期(M期),其中前者又可进一步细分为DNA合成前期(G1),DNA合成期(S)和DNA合成后期(G2),在此期间的任务主要是完成染色质中的DNA复制和相关蛋白质的合成。
吉西他滨进入人体后由脱氧胞嘧啶激酶活化起作用,形成吉西他滨磷酸盐(dFdCMP)、吉西他滨二磷酸盐(dFdCDP)和吉西他滨三磷酸盐(dFdCTP),其中后两者为活性物质,可以抑制DNA合成:dFdCDP通过抑制核糖核酸还原酶,使三磷酸脱氧核苷产生量减少(合成DNA所必需),尤其是脱氧三磷酸胞苷(dCTP)减少,最终导致细胞凋亡;dFdCTP与dCTP竞争掺入DNA链中使DNA链延长,但DNA聚合酶不能去除掺入的dFdCTP,进而使延伸的DNA链不能修复,从而抑制DNA合成,最终导致细胞凋亡。[3]
吉西他滨的作用机制示意图[3]
吉西他滨的合成
礼来公司以商品名“健择(Gemzar)”将吉西他滨推入市场,最初的合成路线也是由礼来公司在1988年开发。Hertel等人以缩酮保护的D-甘露醛1为起始原料,经Reformatsky反应同时引入氟原子和酯基官能团,最终得到顺反异构体混合物,经手性HPLC分离得到反式产物2。随后,利用离子交换树脂Dowex 50脱去缩酮保护基的同时发生分子内羟醛缩合生成中间产物3,游离的羟基首先通过形成硅醚进行保护,然后利用强还原剂二异丁基氢化铝(DIBAL-H)对羰基进行还原得到关键中间体4。为了利用亲核取代反应引入碱基部分,研究人员则将产物4中的羟基转变成甲磺酸酯以增强其离去能力,完成取代反应后再利用反相HPLC对异构体进行分离即可获得纯净的ꞵ-差向异构体。[4]
吉西他滨的早期合成路线
显然,礼来公司最初的合成路线并不具备立体选择性,必须依赖HPLC等手段对异构体进行拆分,也无法实现大规模生产。1991年,礼来公司的研究人员Chou等人对上述路线进行了改进,只需要通过结晶法就可以对异构体进行分离。他们的合成路线并未有大幅改变,只是调整了中间体A的保护基即可通过结晶法获得单一构型的中间产物。幸运的是,最终产物B也可通过结晶法进行分离,操作简单,无需借助仪器。[5]
吉西他滨的改进合成路线
吉西他滨作为治疗非小细胞肺癌最有效的一线药物之一,也是目前治疗晚期胰腺癌的“金标准”。它具有高缓解率,延长生存期和低副反应等优点,特别是其可有效延长病人的生命,提高病人生存质量。多种肿瘤的临床研究证明,即使在吉西他滨缓解率不高的研究中,其生存质量还是得到明显改善。而且,吉西他滨给药方便,适合门诊使用,更符合药物经济学原则。因此,吉西他滨的众多特性在肿瘤治疗更加重视人性化的今天得到了完美的体现。