功能化的芳烃骨架化合物被广泛应用于试剂、催化剂、材料以及药物中。亲电芳香取代反应(通过带电的Wheland中间体),如Friedel-Crafts反应,是获取取代芳烃的经典方法。过渡金属和光催化的发展丰富了合成化学家制备不同功能化芳烃骨架的工具箱[1]。通过带负电荷的Meisenheimer加合物功能化通常依赖于硝基取代基、核苷卤素(X)或外加氧化剂(H),其适用性受到限制[2]。相关研究已经确定σH加合物的形成先于σX加合物的形成,近期,谭斌课题组利用不对称有机催化[3]和偶氮基团[4]来获取σH加合物,并有效地利用双功能手性磷酸(CPA)催化剂实现对芳烃的功能化。偶氮取代基可以构成扩展的共轭,并且其吸电子能力可以确保对芳烃进行区域选择性亲核进攻。偶氮取代基还可作为氧化剂,促进σH加合物中间体的快速分子内转化。为了进一步扩展这一概念并为芳烃功能化提供一个更通用的合成策略,原则上可以利用具有与偶氮基类似电子性质的取代基的底物。
借助对一系列萘衍生物的电子结构计算,作者发现亚硝基基团对该种转化具有很大的可能性。在上述背景研究的基础上,南方科技大学谭斌课题组报道了在DFT的指导下,利用手性磷酸作为催化剂,可在温和的反应条件下,实现含有吲哚(萘酚)骨架的化合物与亚硝基萘反应,均以优秀的对映选择性得到不同轴手性化合物(图1)。 相关成果发表于:
DFT-Guided Phosphoric-Acid-Catalyzed Atroposelective Arene Functionalization of Nitrosonaphthalene
Wei-Yi Ding, Peiyuan Yu, Qian-Jin An, Katherine L. Bay, Shao-Hua Xiang, Shaoyu Li, Ying Chen, K.N. Houk,* and Bin Tan* Chem 2020, 6, 1-14. DOI: 10.1016/j.chempr.2020.06.001
图1. DFT指导的基于亚硝基萘构筑轴手性化合物
作者首先设计了一系列取代萘并进行了初步的计算筛选,以寻找最佳的取代萘作为催化不对称亲核芳香取代的模型底物。通过对电子亲和势(EA)、最低空轨道(LUMO)能量等计算,发现亚硝基萘具有很好的反应潜力。以下是其主要研究内容:
A:亚硝基萘-吲哚骨架轴手性化合物:首先,以2-亚硝基萘1a与叔丁基取代的吲哚2a为模板底物,在5 mol% CPA(S)-C1作为催化剂,以二氯甲烷作为溶剂,可在室温下进行反应,产物3a并没有得到,但获得氧化产物4a(收率12%,ee为62%)和5a(收率18%,ee为65%)(表1, entry 1)。通过对催化剂、氧化剂、溶剂等条件的筛选,最终作者以1 mol%的(S)-C4作为催化剂,以O3作为氧化剂,在二氯甲烷中室温反应为最优条件(表1, entry 18)。
表1. 条件筛选
在获得上述最优反应条件后,作者首先对2-亚硝基萘底物进行了拓展研究。各种7-位或8-位不同基团取代的2-亚硝基萘均能较好地适应上述最佳的反应条件,并以优秀的收率和对映选择性(均>95% ee)得到相应产物(图 2 A)。同时,作者也对具有不同取代基的吲哚进行了底物拓展的研究,当吲哚2-位叔丁基换为其他位阻较大的烷基取代基时,均以优秀的对映选择性得到目标产物,但是,当叔丁基换为其他位阻较小的烷基取代基或者苯基时,产物在反应过程中已经消旋化。因此,作者在吲哚4-位引入甲基,且2-位为苯基或者甲基取代时,进行了新的条件探索,当以CPA(S)-C20为催化剂,均能获得中等收率以及良好对映选择性的目标产物(图 2 B)。
图2 A 不同取代的2-亚硝基萘拓展研究
图2 B 不同取代的吲哚拓展研究
B.苯胺-吲哚骨架轴手性化合物:之后,作者对目标化合物5进行了底物拓展研究。首先,以2-亚硝基萘1a与叔丁基取代的吲哚2a为模板底物,以5 mol% CPA(S)-C4作为催化剂,以二氯甲烷作为溶剂,在室温下进行反应,可获得48%收率以及98% ee的产物5a(表2, entry 1)。通过对溶剂、催化剂、底物的比例等条件筛选,最终作者以5 mol%的(S)-C4作为催化剂,以乙酸乙酯作为溶剂,以两倍当量的1a下进行室温反应为最优条件,进行底物拓展研究(表2, entry 14)。
表2苯胺-吲哚骨架轴手性化合物条件筛选
在最优反应条件下,作者首先对2-亚硝基萘进行了底物拓展研究。各种7-位或8-位不同基团取代的2-亚硝基萘均能较好地适应上述最佳的反应条件,从而以中等至良好的收率和优秀的对映选择性(均>97% ee)得到相应产物(图3 A)。同时,作者也对具有不同取代基的吲哚进行了的底物拓展研究,不同位置、不同电性取代基的吲哚均能很好的适应该反应。当吲哚2位叔丁基换为其他烷基取代基时,均能以优秀的对映选择性得到目标产物(图3 B)。
图3 A不同取代的2-亚硝基萘拓展
图3 B不同取代的吲哚拓展研究
NOBIN轴手性化合物:此外,作者对NOBIN类目标化合物进行了底物拓展研究(图4)。首先,以2-亚硝基萘1a与7-甲氧基-2-萘酚6a为模板底物,以10 mol% CPA(R)-C10作为催化剂,以二氯甲烷作为溶剂,DIDA作为氧化剂,在-30 °C下进行反应,并经过连续的氢化过程,获得产物7a(收率59%, ee为87%)。作者进一步对具有不同取代基的2-亚硝基萘与2-萘酚进行了底物拓展研究,均以中等至良好的收率(50-80%)以及优秀的对映选择性获得相应的目标产物(84-93% ee)。
图4 NOBIN拓展研究
D:理论计算研究:作者提出了可能的反应机理,并进行了理论计算研究(图5)。在手性磷酸催化下,吲哚亲核进攻2-亚硝基萘,生成不稳定的σH加合物中间体,经过迅速的分子内转化,生成中间体I。进一步的芳构化生成中间体II,在氧化剂的存在下,可以得到目标产物4a。中间体II经过进一步的环化反应可以生成中间体III,经过β-H消除,可以得到目标产物5a。作者对反应过程进行了详细的理论计算研究,对我们认识反应过程有极大的帮助。
图5 可能的催化循环
南方科技大学谭斌课题组报道了在DFT的指导下,利用手性磷酸作为催化剂,可在温和的条件下反应,实现吲哚(萘酚)骨架化合物与亚硝基萘的反应,并获得优异对映选择性的轴手性化合物,如亚硝基萘-吲哚骨架、苯胺-吲哚骨架以及NOBIN骨架等轴手性化合物。此外,作者提出了可能的催化循环机理,并对反应过程的详细机理进行了相关的理论计算研究。
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!
tropane是一类具有多样生物活性的天然产物,其中大多数生物碱都能够与细胞的神经递质乙酰胆碱相互作用。自Robinson题组首次合成托烷类生物碱起,tropan的不对称合成取得了极好的研究进展,然而,多数合成方法局限于主要局限于手性托烷类化合物的区域选择性反应和非手性托烷类化合物的去对称化反应。只有少数不对称合成8-氮杂双环[3.2.1]辛烷类化合物的报道是关于手性Rh(II)催化下吡咯和烯醇重氮乙酸酯的不对称[4+3]环加成反应[1]、异喹啉衍生的偶氮甲亚胺不对称1,3-偶极环加成反应[2]以及L-脯氨酸催化内消旋-N-叔丁氧羰基-(吡咯烷-2,5-二基)二乙醛的不对称分子内羟醛反应[3]。基于上述研究背景的基础上,西班牙Basque大学Uria、Vicario团队和西班牙Basque大学Merino团队共同报道了Brønsted酸催化内消旋环烯胺衍生的环氧化物的不对称分子内开环反应,能够以良好至优秀的收率、对映选择性以及优良的非对映选择性获得一系列手性8-氮杂双环[3.2.1]辛烷类化合物(Scheme 1)。相关研究成果发表于
“Enantioselective Synthesis of Tropanes: Brønsted Acid-Catalyzed Pseudotransannular Desymmetrization”
S. Rodriguez, U. Uria,* E. Reyes, L. Carrillo, T. Tejero, P. Merino*, J. L. Vicario* Angew. Chem. Int. Ed. 2020, 59, 6780. DOI: 10.1002/anie.202000650
Scheme 1 背景研究
以环氧环庚胺1a为模板底物,作者环氧环庚胺中氨基保护基、催化剂以及溶剂等反应条件进行反复筛选,确定最佳反应条件(Table 1):1a为底物,5 mol% 3g为催化剂,甲苯为溶剂,在-20℃条件下反应12小时,能够以95%的收率和94%的对映选择性获得产物2a。若将更换氯苯作为溶剂,同样能够以93%的收率和92%的对映选择性得到产物2a。
Table 1 条件筛选
在最佳反应条件下,作者对反应的底物范围进行了考察(Table 2)。研究发现以甲苯或氯苯作为溶剂,1位烷基取代或芳基取代的内消旋4,5-环氧环庚胺均能较好的适应反应条件,能够以良好至优良的收率、对映选择性以及优良的非对映选择性获得相应产物。1位杂芳基取代的内消旋4,5-环氧环庚胺同样可以参与反应,然而,产率出现较为显著地降低相应产物的收率会明显降低。同时,作者发现有一部分氨基环氧化物很难获取到绝对单一手性纯的试剂进行研究,这时就不可避免地要采用1,5-cis-与1,5-trans-氨基环氧化物的非对映混合物进行实验研究。
Table 2底物扩展
为了证明反应的应用潜力,作者进行了一系列相关产物的合成应用研究(Scheme 2)。研究表明,2a经历简单的N-去甲苯磺酰化反应、N-甲基化反应就可转化为(-)-α-tropanol。同时,2a依次经过醇氧化反应、炔基化反应、Rupe重排反应以及N-脱甲苯磺酰化/N-甲基化反应可以转化为天然产物(+)-ferruginine。
Scheme 2 衍生反应
西班牙Basque大学Uria、Vicario团队和西班牙Zaragoza大学Merino团队共同报道了手性磷酸催化内消旋环烯胺衍生的环氧化物的不对称去对称化反应,能以良好至优良的收率、对映选择性以及优良的非对映选择性获得一系列手性托烷类化合物。同时,经过简单的衍生反应,作者成功实现了天然产物(-)-α-tropanol和(+)-ferruginine的全合成。此外,反应机理与计算研究表明N-Ts基团对反应的发生以及对映选择性的控制起关键作用。
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!
Ene反应是带有烯丙基氢的烯烃和亲烯体之间发生的反应,这是最直接的原子利用率最高的碳-碳键形成方法。Brønsted酸和Lewis酸可以有效地催化区域选择性的亚氨-ene反应,但关于酸催化不对称的亚氨-ene反应的报道还很少。1998年,Lectka团队和Jørgensen团队首次报道了Lewis酸CuClO4-BINAP络合物或CuPF6-BINAP络合物分别催化对甲苯磺酰基取代的α-亚氨酯的对映选择性醛亚胺-ene反应[1]。受到该报道的启发,醛亚胺-ene反应得到了极大的发展,而同样重要的酮亚胺-ene反应因酮亚胺的活性低、空间位阻大等原因一直停滞不前。到目前为止,关于不对称酮亚胺-ene反应的报道只有Jia课题组报道的Ni(ClO4)2和手性膦络合物催化N-磺酰基α-酮亚氨酸酯和α-甲基苯乙烯的不对称酮亚胺-ene反应这一例[2](Scheme 1A)。受到该课题组报道的不对称酮亚胺-ene反应的启发,南开大学李鑫团队报道了第一例B(C6F5)3/手性磷酸催化2-芳基-3H-吲哚-3-酮和α-甲基苯乙烯的对映选择性酮亚胺-ene反应,能以良好的收率和优秀的对映选择性得到一系列重要的四取代手性吲哚-3-酮衍生物(Scheme 1B)。相关研究成果发表于
“B(C6F5)3/Chiral Phosphoric Acid Catalyzed Ketimine-ene Reaction of 2-Aryl-3H-indol-3-ones and α-Methylstyrenes”
Zhang, Q.-X.; Li, Y.; Wang, J.; Yang, C.; Liu, C.-J.; Li, X.;* Cheng, J.-P. Angew. Chem. Int. Ed. 2020, 59, 4550-4556. DOI: 10.1002/anie.201915226
Scheme 1. 不对称酮亚胺-ene反应
李鑫教授
研究经历
研究领域
物理有机化学在不对称催化反应机理研究中的应用、新型手性质子酸催化剂设计及应用、含有手性季碳中心化合物的不对称合成等。
以2-苯基-3H-吲哚-3-酮1a和α-甲基苯乙烯2a 为模板底物,作者对各种反应条件进行反复筛选,确定最佳条件为(Table 1):2 mol%B(C6F5)3和2 mol%(S)–4f为催化剂,5Å分子筛为添加物,乙醚为溶剂,在室温条件下反应5 h,能以89%的收率和97%的对映选择性得到相应产物3a。
Table 1. 条件筛选
在最优反应条件下,作者对2-芳基-3H-吲哚-3-酮的底物范围进行了考察。各种C5位和C2位取代的2-芳基-3H-吲哚-3-酮均能较好的适应反应条件,能以良好至优秀的收率和优秀的对映选择性得到一系列3,3-二取代吲哚酮化合物。随后,作者考察了烯烃的底物范围。各种邻、间、对为取代的α-甲基苯乙烯以及环状烯烃均能与2-苯基-3H-吲哚-3-酮反应,能以优秀的收率和对映选择性得到一系列相应产物。
为了证明反应的应用潜力,作者又进行扩大化反应和一系列衍生反应(Scheme 2)。将反应扩大至3.4mmol,反应产物的收率和对映选择性与模板反应保持一致。通过简单的衍生反应,作者可将3a转化为N-烯丙基化产物4。然后,在Grubbs II催化作用下,4又可发生关环反应生成多环亚胺5。同时,在氧化条件下,4可转化为化合物6。
接着,作者通过理论计算阐明了B(C6F5)3在反应中的作用即能增强磷酸的酸度、有助于稳定过渡态以及能通过C–H…F氢键相互作用改变手性控制环境。
Scheme 2. 扩大化反应和衍生反应
南开大学李鑫团队报道了第一例B(C6F5)3/手性磷酸催化2-芳基-3H-吲哚-3-酮和α-甲基苯乙烯的对映选择性酮亚胺-ene反应,能以良好的收率和优秀的对映选择性得到一系列重要的四取代手性吲哚-3-酮衍生物。同时,作者通过理论计算阐明了B(C6F5)3在反应中发挥着增强磷酸的酸度、稳定过渡态以及通过C–H…F氢键相互作用改变手性控制环境等作用。
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!
轴手性化合物广泛存在于药物和天然产物中,因而,轴手性化合物的合成受到化学家们的广泛关注。目前关于联芳基、苯甲酰胺以及苯胺类轴手性化合物的合成已经取得了不错的进展,但同样重要的轴手性二芳基胺类化合物的合成被很大程度被忽略了(Scheme 1A)。Kawabata课题组[1]成功构建了一系列分子内具有N-H-N氢键的轴手性二芳基胺类化合物,但该类化合物对分子内氢键的长度极其敏感,若去掉芳基上的吸电子基,相应化合物的立体化学稳定性则会迅速降低(Scheme 1B)。最近,Clayden课题组[2]构建了分子内无氢键作用的轴手性二芳基胺类化合物,但这类化合物在室温条件下都会迅速消旋化(Scheme 1B)。为了开发新的有效合成立体化学稳定的轴手性二芳基胺类化合物,美国圣地亚哥州立大学Gustafson课题组首次报道了手性磷酸催化N-芳基醌类化合物的不对称卤化反应,能以良好至优秀的收率和选择性得到一系列轴手性二芳基胺类化合物。同时,作者发现构建的轴手性二芳基胺类化合物分子内存在N-H-O氢键,所以该类化合物能稳定存在。
“Catalytic Atroposelective Synthesis of N‑Aryl Quinoid Compounds”
Vaidya, S. D.; Toenjes, S. T.; Yamamoto, N.; Maddox, S. M.; Gustafson, J. L.* J. Am. Chem. Soc. 2020, 142, 2198-2203. DOI: 10.1021/jacs.9b12994
Scheme 1. 研究背景
Jeffrey L. Gustafson
研究经历
研究内容
(a) The development of chemical methodologies that enable the enantioselective synthesis of complex molecules; (b) The application of these methodologies to access new selective small molecule probes pertaining to aberrant protein phosphorylation; and (c) The design, synthesis and evaluation of small molecule vanadate complexes as phosphatase inhibitors.
以N-芳基醌类化合物1a和NBS作为模板底物,作者对各种反应条件进行反复筛选,确定最佳条件为(Table 1):10 mol% 3j为最优催化剂,甲苯和正己烷的混合溶剂为最优溶剂,4Å分子筛为添加物,在24oC条件下反应12 h,能以95%的收率和92的对映选择性得到相应产物3a。
Table 1. 条件筛选
在最优反应条件下,作者对反应的底物范围进行了考察。各种2,4-二芳基取代、杂环、萘换取代、2-芳基-4-氯取代的N-芳基醌均能较好的适应反应条件,能以良好至优秀的收率和对映选择性得到相应轴手性二芳基胺类化合物。但N-芳基醌6位的叔丁基换成异丙基或三氟甲基,相应产物的对映选择性明显降低。若将NBS换成NCS或NIS,其相应产物的对映选择性也会降低。同时,若将N-芳基醌中的氮原子保护住,则反应不能正常进行。
随后,为了证明反应的应用潜力,作者又进行了一系列衍生反应。2b中的氮在碱性条件下可被Ts基团取代,能以良好的收率和优秀的对映选择性得到化合物4。同时,2b发生偶联反应,可以中等的收率和优秀的对映选择性得到化合物5。
Scheme 2. 衍生反应
美国圣地亚哥州立大学Gustafson课题组首次报道了手性磷酸催化N-芳基醌类化合物的不对称卤化反应,能以良好至优秀的收率和选择性得到一系列轴手性二芳基胺类化合物。同时,作者发现构建的轴手性二芳基胺类化合物分子内存在N-H-O氢键,所以该类化合物能稳定存在。该策略为高效合成轴手性二芳基胺类化合物提供了一种新方法。
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!
轴手性联芳基二醇骨架广泛存在于天然产物、生物活性分子、有用的手性配体以及催化剂中(Figure 1a),因此,轴手性联芳基二醇化合物的合成受到广泛关注且已经取得了不错的进展。过渡金属催化2-萘酚衍生物的氧化偶联反应是构建C2-对称轴手性联萘酚衍生物最直接有效的方法,但该策略不能有效的合成非C2-对称轴手性联萘酚衍生物。Katsuki课题组、Pappo课题组以及Tu课题组开发出了一些合成办法,但寻找新的合成非C2-对称轴手性联萘酚衍生物的方法仍然具有重要意义(Figure 1b)。最近,谭斌课题组[1]、Kurti课题组[2]和Bella课题组[3]成功实现了应用有机催化亲核加成、中心-轴向手性转换策略将醌或亚氨醌可作为苯酚的前体用于非C2-对称轴手性联萘酚衍生物的合成,但这些策略中醌及其衍生物的底物范围比较局限。在上述背景研究的基础上,南方科技大学谭斌团队和向少华团队共同报道了手性磷酸催化对醌与2-萘酚发生直接亲核加成反应,能以良好至优秀的收率得到一系列轴手性芳基醌化合物(Figure 1c)。同时,在手性磷酸催化作用下,2-氯-1,4-萘醌类似物还可与吲哚发生亲核加成反应,能以良好的收率和优秀的对映选择性得到一系列轴手性吲哚萘醌化合物。相关研究成果发表于
“Organocatalytic Enantioselective Synthesis of Atropisomeric Aryl-p-quinones: Platform Molecules for Diversity-oriented Synthesis of Biaryldiols”
Chen, Y.-H.; Li, H.-H.; Zhang, X.; Xiang, S.-H.; * Li, S.; Tan, B.* Angew. Chem. Int. Ed. 2020, Early View. DOI: 10.1002/anie.202004671
Figure 1 背景研究
作者以1,4-苯醌1a和和2-萘酚2为模板底物,通过对催化剂、溶剂以及氧化剂等反应条件反复筛选,确定了两种最优条件(Figure 2):A)酯基取代的对醌与8-碘-2-萘酚为模板底物,(R)-CPA1为催化剂,CH2Cl2为溶剂,在-78℃条件下反应24小时后,再加入1.2 equiv 外源性氧化剂DDQ的CH2Cl2溶液,在-78℃条件下反应1小时,能以85%的收率和96%的对映选择性得到产物4a。B) 2-氯-对醌与7-甲氧基-2-萘酚为模板底物,(R)-CPA1为催化剂,DCE为溶剂,在-32℃条件下反应72小时后,再加入1.0 equiv 外源性氧化剂DDQ的DCE溶液,在-32℃条件下反应0.5小时,能以75%的收率和96%的对映选择性得到产物5a。
Figure 2 最优反应条件
在最优反应条件下,作者对反应的底物范围进行了考察。各种酯基取代的对醌、各种卤素取代的对醌以及各种给电子取代的萘酚均能较好的适应反应条件,能以良好至优秀的收率和优秀的对映选择性得到相应产物。
紧接着,为了证明反应的应用潜力,作者进行了一系列扩大化反应和衍生反应(Figure 3)。首先,作者对模板反应进行了扩大化反应,相应产物的收率和对映选择性能保持不变。然后,作者以5a为模板,在简单的反应条件下能分别与硫亲核试剂、磷亲核试剂以及碳亲核试剂发生亲核加成反应,能以良好的收率和优秀的对映选择性分别得到相应的化合物6,7,8。同时,在Sc(OTf)3作用下,5a还能与吲哚发生C-亲核加成反应,再经过简单的氧化过程即可得到具有重要作用的轴手性吲哚-芳基-对醌类化合物。
Figure 3 扩大化反应与衍生反应
接着,通过优化上述最优条件,作者发现2-氯-1,4-萘醌可和2-叔丁基吲哚发生直接加成,能以良好的收率和优秀的对映选择性得到轴手性吲哚萘醌化合物。同时,作者考察了反应的底物范围。各种取代的2-叔丁基吲哚、2-叔戊基吲哚以及2-(1-金刚烷基)吲哚均能较好的适应反应条件,能以良好的收率和优秀的对映选择性得到相应产物(Figure 4)。
Figure 4 底物扩展
南方科技大学谭斌团队和向少华团队共同报道了手性磷酸催化对醌与2-萘酚发生直接亲核加成反应,能以良好至优秀的收率得到一系列轴手性芳基醌化合物。得到的轴手性芳基醌化合物还可进一步与硫亲核试剂、磷亲核试剂以及碳亲核试剂发生亲核加成反应。同时,在手性磷酸催化作用下,2-氯-1,4-萘醌类似物还可与吲哚发生亲核加成反应,能以良好的收率和优秀的对映选择性得到一系列轴手性吲哚萘醌化合物。
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!
本文作者:Summer
N-芳基咔唑化合物广泛存在于天然产物中,同时它还可用于功能性OLED材料中,因此N-芳基咔唑化合物的不对称合成一直是化学家们关注的重中之重(Figure 1A)。较为典型的方法即过渡金属催化的N-芳基化策略[1](Figure 1B),但这种方法存在芳基预官能团化和原子利用率低等问题。为了克服这些问题,高价碘或过渡金属催化的芳烃氧化胺化反应[2]以及新型的光催化或电催化胺-芳烃偶联反应[3]应运而生(Figure 1C),这些反应极大地解决了原子利用率低的问题,但底物范围比较局限。在上述背景研究的基础上,南方科技大学谭斌团队 (谭斌教授介绍)首次报道了手性磷酸催化偶氮苯衍生物与咔唑的芳基C-H胺化反应,能以优秀的收率及对映选择性得到一系列轴手性N-芳基咔唑化合物。相关研究成果发表于
“Chiral Phosphoric Acid Catalyzed Atroposelective C-H Amination of Arenes”
Xia, W.; An, Q.-J.; Xiang, S.-H.; Li, S*.; Wang, Y.-B.; Tan, B.* Angew. Chem. Int. Ed. 2020, 59, 6775-6779. DOI: 10.1002/anie.202000585
Figure 1. 研究背景
以偶氮苯衍生物1a和2-叔丁基-9H-咔唑2a作为模板底物,作者对各种反应条件进行反复筛选,确定最佳条件为(Table 1):10 mol%手性磷酸S-C6为催化剂,CHCl3为溶剂,在50 oC条件下反应3天,能以76%的收率和93%的对映选择性得到相应产物3a。
在最优反应条件下,各种吸电子取代与给电子取代的偶氮苯衍生物以及各种取代咔唑均能较好的适应反应条件,能以中等优秀的收率及对映选择性一系列轴手性N-芳基咔唑化合物。同时,各种取代吲哚化合物也能较好的适应反应条件,能以中等的收率和优秀的对映选择性得到轴手性N-吲哚化合物。
Table 1. 条件筛选
为了证明该反应的应用潜力,作者进行了一系列衍生反应。通过简单的衍生反应,3a可转化为轴手性硫脲化物和轴手性磷化物。这两种化合物可作为催化剂催化不对称反应,能以优秀的收率和对映选择性得到相应产物。
通过优化反应条件,2,6-二偶氮萘化物可与咔唑反应生成同时具有两个轴手性的化合物。同时,各种2,6-二偶氮萘化物和咔唑也能较好地适应该条件,能以中的收率和优秀的对映选择性得到一系列同时具有两个轴手性的化合物(Scheme 3)。
Scheme 3. 双轴手性化合物的合成及底物扩展
南方科技大学谭斌团队首次报道了手性磷酸催化偶氮苯衍生物与咔唑的芳基C-H胺化反应,能以优秀的收率及对映选择性得到一系列轴手性N-芳基咔唑化合物。同时,2,6-二偶氮萘化物可与咔唑反应生成同时具有两个轴手性的化合物。
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!
Antilla烯丙基硼化(Antilla allylboration)是在手性磷酸催化剂(R)-TRIP-PA作用下进行的醛的不对称烯丙基硼化,生成的硼酸酯,再经手性磷酸的质子去硼化反应(protodeboronation),最终获得手性高烯丙醇(homoallylic alcohol)产物的反应。该反应在2010年,由美国South Florida大学(University of South Florida)化学系的J. C. Antilla研究组首次报道。反应具有良好的底物适用性,适用于芳香醛、脂肪醛及α,β-不饱和醛的不对称烯丙基硼化反应。同时,该反应具有优良的产率与较高的对映选择性。并且,(R)-TRIP-PA催化剂同样适用于醛(与巴豆基硼酸酯)的巴豆基化反应。2012年,L. R Reddy又将该手性磷酸催化剂应用于醛与联烯基硼酸酯的对映选择性炔丙基化反应。同样获得较高的产率与优良的对映选择性。
Baulamycin中Fragment A的合成[1]
苯甲醛的不对称巴豆基化[2]
高炔丙醇的对映选择性合成[3]
在氩气气氛下,将(R)-TRIP-PA催化剂 (0.05 eq.)、重新蒸馏过的醛(1 eq.)及干燥的甲苯(维持底物浓度为0.06 M)加入至Schlenk瓶中。将上述反应液冷却至-30 °C,随后用注射泵缓慢加入烯丙基硼酸频那醇酯(1.2 eq.)。滴加结束后,将上述反应混合物升至室温,并在室温下搅拌,直至反应完成。反应结束后,将反应混合物直接采用硅胶柱色谱进行分离纯化(乙酸乙酯/正己烷 1 : 9v/v 作为洗脱剂),获得最终目标产物。
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!
有取代基的1,1′-联二萘酚的磷酸化合物,该手性磷酸化合物作为手性质子酸类的有机分子催化剂,被应用于催化各种化学反应。
该类手性磷酸催化剂最初是由秋山隆彦(学習院大)・寺田眞浩(東北大)两位化学家在2004独立开发成功的,所以也被叫做秋山・寺田催化剂。
近年来对于此类化合物有很多变形,比如说把磷酸部位改成磷酸酰亚胺等,这种变形后的共轭碱,在反应中形成counter anion的研究实例不断地出现,是十分热门的研究课题之一。
<review>
<review for chiral counteranion catalysis>
下图所示的磷酸酰亚胺催化剂作为亲电试剂的反应实例有很多。下图给出了一个应用于不对称Nazarov环化的参考实例[1]。
在反应中通过形成π烯丙基Pd的催化不对称重排反应[2]
使用手性磷酸阴离子作为金催化剂的手性counter anion的例子[3]。该反应体系中,配体的立体位阻也有助于高手性的产物的形成。